·±ÌåÖÐÎÄ  
 
°æÖ÷£ººÚľÑÂ
 ¡¤ ¾ÅÑôÈ«ÐÂÃâÇåÏ´ÐͶ¹½¬»ú È«ÃÀ×îµÍ
 
ÏÁÒåÏà¶ÔÂÛ²úÉúµÄÀúÊ·±³¾° £¨Ö®ËÄ£ºÏÁÒåÏà¶ÔÂÛ¾¿¾¹ÓжàÉÙÔ­´´µÄ¶«Î÷£¿£©¶þ¡¢¼¼Êõϸ½Ú£¨A¡¢B£©
Ëͽ»Õß:  2015Äê10ÔÂ13ÈÕ08:43:45 ÓÚ [ÊÀ½ç¾üÊÂÂÛ̳] ·¢ËÍÇÄÇÄ»°

ÖØÐÂÉóÊÓÎ÷·½¿Æѧ³É¾Í¡¢¿ÆѧÈËÎïÓëÈ·Á¢ÖйúÃñ×å×Ô×ðÐÄ×ÔÐÅÐÄ¿ÆÆÕϵÁУº

ÏÁÒåÏà¶ÔÂÛ²úÉúµÄÀúÊ·±³¾° £¨Ö®ËÄ£ºÏÁÒåÏà¶ÔÂÛ¾¿¾¹ÓжàÉÙÔ­´´µÄ¶«Î÷£¿£©

 

Ŀ¼£º

0¡¢Ö¤¾Ý˵Ã÷

  1. »ù±¾ÐÅÏ¢

  2. ¼¼Êõϸ½Ú

  3. ˼¿¼Óë̽Ë÷

     

    ¶þ¡¢¼¼Êõϸ½Ú£¨A¡¢B£©

    ³ý·ÇÁíÍâ×öµ¥¶À˵Ã÷£¬·ñÔòÒÔÏÂËùÓÐ×¢½â»ò˼¿¼ÌâÖУ¬ÒÔËÙ¶Èv×öÔÈËÙÖ±ÏßÏà¶ÔÔ˶¯µÄÁ½¸ö¸ÕÌå×ø±êϵO-XYZÓëO¡¯-X¡¯Y¡¯Z¡¯ÔÚt=0ÕâÒ»¿ÌÆä×ø±êÔ­µãÒÔ¼°¶ÔÓ¦µÄ×ø±êÖáÊDZ˴ËÖغϵģ¬ÇÒ¶þÕßµÄÏà¶ÔÔ˶¯·½ÏòÑØ×ÅX-Öᣨ»òX¡¯-Öᣩ£¬¶øÁ½¸ö×ø±êϵÄÚʼþ£¨events£©µÄʱ¿Õ×ø±ê·Ö±ðÒÔ£¨x, y, z, t£©Ó루x¡¯, y¡¯, z¡¯, t¡¯£©±íʾ£¬²¢¼Ç¦Ã=1/¡Ì(1-v2/c2)£¬ÆäÖÐcΪ¹âËÙ³£Êý¡£ÁíÍ⣬³ý·ÇÔÚרÃÅÌÖÂÛÎÄÏס¾Einstein1905¡¿ÖеÄÓйؽá¹û֮ʱ£¬·ñÔòÀúÊ·Éϲ»Í¬ÎïÀíѧ¼ÒËùÒý½øµÄÓëÂåÂ××ȱ任Ïà¹ØµÄËùÓÐ×ø±ê±ä»»ÔÚÕâÀﶼ²ÉÓÃͳһµÄ±äÁ¿¼ÇºÅ½øÐÐÊéд¡£

     

    ×¢1£¨¹ØÓÚÂåÂ××ȱ任ÓëÏÁÒåÏà¶ÔÂ۵ĹØϵ£©£º°®Òò˹̹1935ÄêÕâÑù˵µÀ£¨¡¾Einstein1935¡¿µÚ233Ò³£©£º

    ¡°ÏÁÒåÏà¶ÔÂÛ²úÉúÓÚÂó¿Ë˹Τµç´Å·½³Ì¡£ÕâʹÎÒÃÇ¿´µ½£¬¼´±ãÊÇÔÚÁ¦Ñ§¸ÅÄî¼°Æä¹ØϵµÄÍƵ¼ÖУ¬Óйصç´Å³¡µÄ¸ÅÄî¼°Æä¹ØϵҲ°çÑÝÁËÒ»¸ö¸ù±¾¶ø±ØÒªµÄ½ÇÉ«¡£¶øÁíÒ»·½Ã棬ÕâЩµ¼³ö¹ØϵµÄ¶ÀÁ¢´æÔÚÎÊÌâÓÖ³ÉΪһ¸ö·Ç³£×ÔÈ»µÄÎÊÌ⣬ÒòΪÂåÂ××ȱ任×÷ΪÏÁÒåÏà¶ÔÂÛÕæÕýµÄÀíÂÛ»ù´¡ËüͬÂó¿Ë˹ΤÀíÂÛûÓÐÈκιØϵ£¬Í¬Ê±Ò²ÒòΪÎÒÃDz»ÖªµÀÂó¿Ë˹ΤÀíÂÛµÄÄÜÁ¿¸ÅÄîÔÚ·Ö×ÓÎïÀíѧµÄÓйØÊý¾ÝÃæÇ°ÔÚ¶à´ó³Ì¶ÈÉÏ¿ÉÒÔά³Ö¡£¡±

    µ±È»£¬ÂåÂ××ȱ任×÷ΪÏÁÒåÏà¶ÔÂÛµÄÀíÂÛºËÐĵÄ×îÖ±½ÓÖ¤¾Ý»¹ÊÇÀ´×ÔÓÚ°®ÎÄ¡¾Einstein1905¡¿×ÔÉí£ºËüµÄµÚ3½ÚµÄÈ«²¿ÄÚÈÝÊÇÓйØÂåÂ××ȱ任µÄÍƵ¼£¬ËüµÄµÚ1¡¢2½ÚµÄ»ù±¾ÄÚÈÝÊÇÕâ±ä»»µÃÒÔÍƵ¼µÄÀíÂÛÇ°ÌᣬËüµÄÆäÓà¸÷½Ú¼´µÚ4-10½Ú¶¼ÊÇÕâ±ä»»µÄÖ±½ÓÓ¦Óá£

     

    ÂåÂ××ÈÊÇ1902Äêŵ±´¶ûÎïÀí½±£¨Nobel Prize in Physics£©»ñµÃÕߣ¬Ó¢¹ú»Ê¼ÒЭ»áÍâ¼®»áÔ±£¨Foreign Member of Royal Society£¬1905£©£¬1908ÄêÀ­Ä·¸£µÂ½±£¨Rumford Medal£©»ñµÃÕߣ¬1917ÄêÃÀ¹ú¸»À¼¿ËÁÖ½±£¨Franklin Medal£©»ñµÃÕߣ¬1918ÄêÓ¢¹ú»Ê¼ÒЭ»á¿ÆÆÕÀû½±£¨Copley Medal of Royal Society£©»ñµÃÕß¡£

     

    ÅÓ¼ÓÀ³ÊÇ1900ÄêÓ¢¹ú»Ê¼ÒÌìÎÄЭ»á½ð½±£¨Gold Medal of Royal Astronomical Society£©»ñµÃÕߣ¬1901ÄêÂ׶ػʼÒЭ»áÎ÷¶ûά˹Ìؽ±Õ£¨Sylvester Medal£©»ñµÃÕߣ¬1905ÄêÂíÌ©ÎÚÆæ½±£¨Matteucci Medal£©»ñµÃÕߣ¬1905ÄêÐÙÑÀÀû¿ÆѧԺ£¨Hungarian Academy of Sciences£©²¨ÀûÑǽ±£¨Bolyai Prize£©»ñµÃÕߣ¬1911ÄêÃÀ¹ú̫ƽÑóÌìÎÄѧ»á£¨Astronomical Society of the Pacific£©²¼Â³Ë¹½±£¨Bruce Medal£©µÄ»ñµÃÕߣ»Ò»¸öÈËÒ»ÉúÖ»Òª»ñµÃÕâÆäÖеÄÈκÎÒ»ÏîÈÙÓþ¶¼ÒѾ­ÊǼ«´óµÄÈÙÐÒ£¬µ«ÊÇÅÓ¼ÓÀ³È´»ñµÃÁËÎåÏÅÓ¼ÓÀ³»¹±»ÊÓΪÊýѧʷÉϽöÓеļ¸Î»Ìì²ÅÈËÎïÖ®Ò»¡£

     

    ×¢2£¨¹ØÓÚ¸£¸ñÌØÊ׳«ÁËÂåÂ××ȱ任µÄ˼Ï룩£º¸£¸ñÌØÔÚ¿¼ÂDz»¿ÉѹËõ¹âý½éÖеĶàÆÕÀÕЧӦʱÌá³öÁËÒÔÏÂ×ø±ê±ä»»£º

    x¡¯=x-vt£¬y¡¯=y/¦Ã£¬z¡¯=z/¦Ã£¬t¡¯=t-vx/c2¡­¡­£¨1£©

    Èç¹û½«Õâ¸ö±ä»»ÖÐÿ¸ö·½³ÌµÄÓҶ˳ËÒԦã¬ÔòËü±ã³ÉΪÁËÂåÂ××ȱ任£»²Î¼û±¾Îĵġ°×¢3¡±¡¢¡°×¢4¡±¡£

     

    ×¢3£¨¹ØÓÚÂåÂ××È·¢Õ¹ÁËÂåÂ××ȱ任£©£ºÈç¹û¼Çx*=x-vt£¬ÄÇôÂåÂ××È1892ÄêΪ½âÊ͹âÐвîÓë·ÆË÷ʵÑéËùÌá³öµÄ±ä»»¿ÉÒÔ±íʾΪ£º

    x¡¯=¦Ãx*£¬y¡¯=y£¬z¡¯=z£¬t¡¯=t-¦Ã2vx*/c2¡­¡­£¨2£©

    ËûÓÚ1895ÄêÓÖ·Ö±ðʹÓÃÁËÒÔϱ任£º

    x¡¯=¦Ãx*£¬y¡¯=y£¬z¡¯=z£¬t¡¯=t¡­¡­£¨3a£©

    ÒÔ¼°

    x¡¯=x*£¬y¡¯=y£¬z¡¯=z£¬t¡¯=t-vx*/c2¡­¡­£¨3b£©

    ×îºó£¬ÂåÂ××ÈÓÚ1899ÄêÓë1904Äê·Ö±ð²ÉÓÃÁËÒÔϱ任

    x¡¯=¦Ãx*£¬y¡¯=y£¬z¡¯=z£¬t¡¯=t-¦Ã2vx*/c2¡­¡­£¨4a£©

    ÒÔ¼°

    x¡¯=l¦Ãx*£¬y¡¯=ly£¬z¡¯=lz£¬t¡¯=lt/¦Ã-l¦Ãvx*/c2¡­¡­£¨4b£©

    ÆäÖУ¨4b£©ÖеÄlÊÇÓëvÓйص«´ý¶¨µÄ³£Êý¡£µ±l=1ʱ£¬±ä»»£¨4b£©±ã³ÉΪÁËÅÓ¼ÓÀ³Ëù×îºó¶¨Ð͵ıê×¼µÄÂåÂ××ȱ任£»²Î¼ûÎı¾µÄ¡°×¢4¡±¡£

     

    ×¢4£¨¹ØÓÚÅÓ¼ÓÀ³ÍêÉƲ¢¶¨ÐÍÁËÂåÂ××ȱ任£©£º»ùÓÚÂåÂ××È1904ÄêµÄ¹¤×÷£¬ÅÓ¼ÓÀ³ÓÚ1905ÄêÒý½øÁËÈçϱ任£º

    x¡¯=l¦Ã£¨x-vt£©£¬y¡¯=ly£¬z¡¯=lz£¬t¡¯=l¦Ã£¨t-vx£©¡­¡­£¨5£©

    ÕâÊǽ«x*=x-vt´úÈëÂåÂ××ȵı任±í´ïʽ£¨4b£©Öв¢Áîc=1µÃµ½µÄ£»¶ø°®Òò˹̹1905µÄ±ä»»ÔòÊÇ°ÑÅÓ¼ÓÀ³µÄ±ä»»£¨5£©ÖеÄcÖØлָ´ÎªÔ­À´µÄ¼ÇºÅ²¢Áîl=1µÃµ½µÄ£¬ËùÒÔ°®Êϵı任¿ÉÒÔ±íʾΪ£º

    x¡¯=¦Ã£¨x-vt£©£¬y¡¯=y£¬z¡¯=z£¬t¡¯=¦Ã£¨t-vx/c2£©¡­¡­£¨6£©

     

    ×¢5£¨¹ØÓÚÂåÂ××ȵ±Ê±µÄѧÊõÁìÐäµØ룩£ºÂåÂ××ÈÊÇ1902Äêŵ±´¶ûÎïÀí½±£¨Nobel Prize in Physics£©»ñµÃÕߣ¬Ó¢¹ú»Ê¼ÒЭ»áÍâ¼®»áÔ±£¨Foreign Member of Royal Society£¬1905£©£¬1908ÄêÀ­Ä·¸£µÂ½±£¨Rumford Medal£©»ñµÃÕߣ¬1917ÄêÃÀ¹ú¸»À¼¿ËÁÖ½±£¨Franklin Medal£©»ñµÃÕߣ¬1918ÄêÓ¢¹ú»Ê¼ÒЭ»á¿ÆÆÕÀû½±£¨Copley Medal of Royal Society£©»ñµÃÕß¡£ÂåÂ××È´Ó1892Ä꿪ʼ¿¼ÂÇÂõ-ĪʵÑéÁã½á¹ûµÄ½âÊ͵½1904ÄêËû½¨Á¢Æð½ÏΪÍêÉƵÄÒÔÌ«ÀíÂÛÇ°ºóÓÃÁËÊ®¶àÄ꣬ËûÊǵ±Ê±Å·ÖÞ¸÷¹úÏà¹ØÁìÓòÄÚµÄÀíÂÛÎïÀíѧ¹Ø×¢µÄ¶ÔÏó£¬ËûÓëÅÓ¼ÓÀ³µÄ½»Á÷ÓëºÏ×÷ÓÈÆäÏÔµÃÓä¿ì¶øĬÆõ£»ÊÂʵÉÏ£¬ËûÃǶþÈË¿°³ÆÊǵ±Ê±ÀíÂÛÎïÀíÁìÓòÄÚµÄË«×ÓÐÇ¡£

     

    ×¢6£¨¹ØÓÚ°®Òò˹̹¶ÔÂåÂ××ȵij¤ÆÚ¹Ø×¢£©£º¡£°®Òò˹̹ÔĶÁÂåÂ××ÈÖø×÷µÄ×îÔçÖ¤¾ÝÊÇÔÚ1901Äê12ÔÂËûд¸øµ±Ê±µÄÅ®ÅóÓÑÂíÀûÆæµÄÒ»·âÐÅÖУ»²Î¼û¡¾CPAE1¡¿Îļþ131¡£ÊÂʵÉÏ£¬ÓÐÀíÓÉÏàÐÅËû¶ÔÂåÂ××ȵĹØעʼÓÚ¸üÔçµÄʱºò£¬ÒòΪËûÔÚ1899Äê8ÔÂд¸øÂíÀûÆæµÄÐÅÖÐËù̸µÄÓйص綯Á¦Ñ§µÄ¿´·¨Ôںܶ෽ÃæÓëÂåÂ××È1892ÄêÓë1895ÄêµÄ¹¤×÷ÏàËÆ£¨¡¾CPAE1¡¿Îļþ52ÒÔ¼°¸ÃÎļþ֮ǰµÄ±àÕß°´ÖеÄ×¢8£©¡£°®Ê϶ÔÂåÂ××ÈÖø×÷µÄ½øÒ»²½ÏµÍ³Ñ§Ï°ÓëÑо¿»î¶¯¿É¼ûÓÚ×Ô´óÔ¼1902ÄêµÄÍí´º»ò³õÏÄËûÓëºÃÓÑË÷ÂåÎÄ¡¢¹þ±ÈÏ£ÈýÈ˳ÉÁ¢µÄ¡°°ÂÁÖÆ¥ÑÇ¿ÆѧԺ¡±£¨µÂÓïAkademie Olympia£©µÄÔĶÁĿ¼Óë¼Æ»®£¨¡¾CPAE5¡¿Îļþ2µÄ×¢6ÒÔ¼°ÄÇÀïµÄ²Î¿¼ÎÄÏס¾Solovine1956¡¿£©¡£

     

    ×¢7£¨¹ØÓÚ°®Òò˹̹µÄÓëÆä־ȤÏàͬµÄÏÍÄÚÖúÆÞ×Ó£©£ºÂíÀûÆæÓë°®Òò˹̹ͬÓÚ1896ÄêÇï¼¾ÔÚÈðÊ¿µÄËÕÀèÊÀÁª°îÀí¹¤Ñ§ÔºÈëѧ£¬Æäרҵ¾ùΪÒÔÊýѧÓëÎïÀíΪÖ÷¿ÆµÄ½ÌÓýѧ¡£¹ØÓÚ¶þÈËÔÚ¶ÁÊéÆÚ¼äÒÔ¼°±ÏÒµºó²»¾ÃÓйØѧÊõÎÊÌâµÄÌÖÂÛÒÔ¼°¶ÔδÀ´µÄÕ¹Íû£¬¿ÉÒԲμûËûÃǵ±Ê±µÄÊéÐÅÀ´Íù£¬±ÈÈ硾CPAE1¡¿Îļþ50¡¢57¡¢74¡¢75¡¢79¡¢93¡¢94¡¢96¡¢101¡¢102¡¢111¡¢127µÈ£¬»òÕß²ÎÔÄÕâƪ×ÛÊöÐÔÎÄÕ¡¾Asmodelle2015¡¿¡£µ«²»¾ÃÖ®ºóÂíÀûÆæÒò¿¼ÊÔ²»ÀûÒÔ¼°Î´»é»³ÔС¢ÉúÅ®µÈÔ­ÒòÎÞ·¨¼ÌÐø»òÖð½¥·ÅÆúÁË×Ô¼ºµÄÊÂÒµÓ뱧¸º£¬²¢ÓÚ1903Äê1ÔÂÓë°®Òò˹̹½á»é£¬´Ó´ËËý¿ªÊ¼È«ÉíÐĵزٳּÒÎñ¡£ÖÁÓÚÔÚÏÁÒåÏà¶ÔÂÛ´´Á¢µÄÇ°ºóÒ»¶ÎʱÆÚÄÚÂíÀûÆæÊÇ·ñÒ²¶Ô°®Òò˹̹µÄÓйØѧÊõÎÄÕÂÓÈÆäÊǶÔÏÁÒåÏà¶ÔÂÛÎÄÕ¡¾Einstein1905¡¿×öÁËÖ±½Ó¹±Ï×£¬»òÕßÂíÀûÆæÊÇ·ñΪÁ˳ɾͰ®Òò˹̹¶ø×ÔÔ¸»ò±»ÆÈ·ÅÆúÁË×Ô¼ºµÄÇ°³Ì£¬Ä¿Ç°Ñ§Êõ½ç¶Ô´Ë»¹´æÔÚÑÏÖصÄÕùÒ飨¡¾Trbuhović-Gjurić1969¡¿£¬¡¾Walker1989¡¿£¬¡¾Stachel1991¡¿£¬¡¾Troemel©Ploetz1990¡¿£¬¡¾Walker1991¡¿£¬¡¾Chiu-Borchardt2008¡¿£¬¡¾Asmodelle2015¡¿£©£¬µ«ÊÇûÓÐÕùÒéµÄÊÂʵȴÊÇ£¬´Ó¶þÈ˽áʶ֮ºóÒ»Ö±µ½°®Òò˹̹1912ÄêÓÐÁËÍâÓö֮ǰ£¬ÂíÀûÆæÒ»Ö±¶¼ÊÇһλÏÍÆÞÁ¼Ä¸Ê½µÄÈËÎï¡£¹ØÓÚ°®Òò˹̹·ò¸¾¶Ô»éºóÉú»îµÄÐÒ¸£¸ÐÊܱÈÈç¿É²Î¼û¡¾CPAE5¡¿Îļþ5»ò¡¾Popović2003¡¿µÚ83Ò³£¬¶ø¹ØÓÚ¶þÈËÕû¸öµÄ°®Çé¡¢»éÒö¹ÊÊ¿ɼûÓÚËûÃǵÄÊéÐż¯¡¾Renn-Schulmann2000¡¿¡£ÒòΪÍâÓöµÈÔ­Òò£¬°®Òò˹̹ÓëÆÞ×ÓÂíÀûÆæÓÚ1914Äê·Ö¾Ó£¬²¢ÓÚÎåÄêºóµÄ1919ÄêÀë»é¡£

     

    ×¢8¡¢9£¨¹ØÓÚ°®Òò˹̹µÄ¼¸Î»ÈÈÐĵĺÃÓÑ»òͬѧ£¬ÒÔ¼°ËûÃǶ԰®Òò˹̹³Ö¾ÃµÄѧÊõ°ïÖú£©£º°®Òò˹̹Óë¹þ±ÈÏ££¨Conrad Habicht£©½áʶÓÚ1901Ä꣬¶þÈ˳ÉΪÖÕÉú±£³ÖͨÐŵĺÃÓÑ£¬°®Òò˹̹ÓëË÷ÂÞÎÄ£¨Maurice Solovine£©ÓÚ1902Äê³õÏàʶ£¬´Ó´Ë¶þÈ˱£³Ö×ÅÖÕÉúÓÑÒ꣬²¢ÓÐÊéÐż¯¡¾Solovine1956¡¿´æÊÀ¡£°®Òò˹̹Óë¹þ±ÈÏ£ÒÔ¼°Ë÷ÂÞÎÄÕâÈýÈË×î³Ù´Ó1902ÄêµÄ³õÏÄ¿ªÊ¼½¨Á¢Ò»¸ö¶¨ÆÚ»áÃæµÄÌÖÂÛС×飬³Æ֮Ϊ¡°°ÂÁÖÆ¥ÑÇ¿ÆѧԺ£¨Akademie Olympia£©¡±£¬ËûÃdzýÁ˹Ø×¢ÐÝÚÓ£¨David Hume£©¡¢ÂíºÕ£¨Ernst Mach£©µÈÕÜѧ¼ÒÖ®Í⣬ÎïÀíѧ¼Òº¥Ä·»ô×È£¨Hermann von Helmholtz£©¡¢°²ÅࣨAndr¨¦-Marie Amp¨¨re£©¡¢ÅÓ¼ÓÀ³µÈÊÇËûÃÇÔÚÎïÀíÁìÓòÄÚµÄÖصãÑжÁ¶ÔÏ󣨡¾CPAE2¡¿µÚ¶þ¾íÐòµÄ×¢42¡¢44¡¢47¡¢49¡¢50¡¢55¡£ËäÈ»´Ë´¦µÄ×¢41Ìá³ö¡°°ÂÁÖÆ¥ÑÇ¿ÆѧԺ¡±µÄÃû³ÆÓë³ÉÔ±¼Ç¼×îÔç³öÏÖÓÚ1903Äê11Ô£¬µ«ÊÇËûÃÇÈýÈË·ÖÉ¢µÄÔĶÁ»î¶¯ÏÔÈ»ÔçÔÚ1902Äê³õÏÄ£¨¡°¸´»î½ÚºóµÄ¼¸¸öÐÇÆÚ¡±£©ÒѾ­¿ªÊ¼£¬±ÈÈç²Î¼û¡¾CPAE5¡¿Îļþ1µÄ×¢4¡¢Îļþ2µÄ×¢6ÒÔ¼°Îļþ15µÄ×¢3ÒÔ¼°Îļþ3¡£±¾×÷Õß×¢£º1902ÄêµÄ¸´»î½Ú·¢ÉúÓÚµ±ÄêµÄ3ÔÂ30ÈÕ£©¡£¡°°ÂÁÖÆ¥ÑÇ¿ÆѧԺ¡±´óÔ¼½âÉ¢ÓÚ1905Äê11ÔÂ֮ǰ²»¾Ã£¬ÒòΪ´ËʱË÷ÂÞÎÄÒѾ­À뿪ÁË°®Òò˹̹µ±Ê±Ëù¾ÓסµÄ³ÇÊ⮶ûÄᣬ¶ø´ËÇ°¹þ±ÈÏ£ÒÑÓÚ1904ÄêµÄ2ÔÂÀ뿪ÁËÄÇÀ¡¾CPAE5¡¿Îļþ16µÄ×¢2ÓëÎļþ22µÄ×¢2£©¡£1904ÄêµÄ3-10Ô£¬Ë÷ÂÞÎÄÒ²ÔøÀ뿪²®¶ûÄá´óÔ¼°ëÄ꣬¹ØÓÚ¡°°ÂÁÖÆ¥ÑÇ¿ÆѧԺ¡±ÔÚ1905ÄêÈÔÈ»´æÔÚµÄÖ¤¾Ý£¬²Î¼û¡¾CPAE5¡¿Îļþ25¡¢26ÒÔ¼°ÄÇÀïµÄ×¢½â¡£

     

    °®Òò˹̹Óë±´Ë÷£¨Michele Besso£©³õʶÓÚ1896Ä꣬ºó³ÉΪÖÕÉúÖ¿ÓÑ£¬ÓжþÈ˵ÄÊéÐż¯¡¾Einstein-Besso1972¡¿´æÊÀ¡£±´Ë÷Óë°®Òò˹̹ÔÚѧÉúʱ´úµÄѧÊõÓëÓÑÒêÍùÀ´£¬±ÈÈç¿É²Î¼û¡¾Bracco2015¡¿£»ÔÚÏÁÒåÏà¶ÔÂÛ´´Á¢Ö®Ç°£¬±´ÊÏ×îÔçΪ°®Òò˹̹ÔÚѧÊõÑо¿ÉÏÌṩ°ïÖúµÄÖ¤¾Ý¿É¼ûÓÚ¡¾Einstein-Besso1972¡¿Îļþ02¡¢03£»±´ÊÏÔÚÏÁÒåÏà¶ÔÂ۵Ĵ´Á¢ÉÏËù×öµÄ°ïÖúÓë¹±Ï׿ɼûÓÚ¡¾Einstein1905¡¿ÎÄÄ©µÄÖÂл¡¢¡¾Ogawa1979¡¿»ò¡¾Pais2005¡¿µÚ139Ò³£»±´ÊÏÔÚ¹ãÒåÏà¶ÔÂ۵Ĵ´Á¢ÉÏËù×öµÄ°ïÖúÓë¹±Ï׿ɼûÓÚ¡¾Einstein-Besso1972¡¿Îļþ1-30ÒÔ¼°°®Òò˹̹-±´Ë÷Êָ壨¡¾Janssen2002¡¿£©¡£

     

    °®Òò˹̹Óë¸ñÂÞ˹Âü£¨Marcel Grossmann£©ÊÇͬ°àͬѧ£¬Ò²ÊÇѧÊõºÏ×÷ÕßÓëÖÕÉúºÃÓÑ¡£¹ØÓÚ¸ñÂÞ˹ÂüÔÚ´´Á¢¹ãÒåÏà¶ÔÂÛÉϵİïÖúÓë¹±Ï×£¬±ÈÈç¿É²Î¼û¡¾Weinstein2012¡¿£»¹ØÓÚ¶þÈ˵ÄÓÑÒêÓëºÏ×÷£¬±ÈÈç¿É²Î¼û¡¾Fox-Keck2004¡¿µÚ129-131Ò³¡£

     

    ×¢10£¨¹ØÓÚ°®Òò˹̹ÊÇ·ñ֪ϤÅÓ¼ÓÀ³µÄ³ÖÐøÑо¿¹¤×÷µÄÎÊÌ⣩£ºÓÉÓÚÒÑÓжà¸öÐÅÏ¢ÇþµÀ¿ÉÒÔ֤ʵ°®Òò˹̹µÄ¡°²»ÖªµÀÅÓ¼ÓÀ³µÄ³ÖÐøÏà¹ØÑо¿¡±µÄ˵·¨¿Ï¶¨ÊÇ´íÎóµÄ£¨¡¾CPAE2¡¿µÚ¶þ¾íÐòÒÔ¼°ÄÇÀïµÄ×¢42£¬¡¾Einstein1952¡¿£¬¡¾Solovine52¡¿£¬¡¾Solovine56¡¿£©£¬ËùÒÔ£¬°®ÊϵÄÕâ¶Î»°µÄÆäÓಿ·ÖµÄÕæʵÐÔͬÑùÒ²´òÉÏÁËÎʺţ¬ÊÂʵÉÏ£¬ÕýÈçÎÒÃÇÔÚ±¾ÎÄËùÒѾ­¿´µ½µÄ£¬°®Ê϶ÔÂåÂ××È°üÀ¨1904ÄêµÄÎÄÕÂÔ­ÎĶ¼ÊÇÊìϤµÄ¡£

     

    ×¢11£¨¹ØÓÚ°®ÎĵÚ9½Ú·ÇÆë´ÎÂó¿Ë˹Τ-ºÕ×È·½³ÌµÄЭ±äÐÔÓëÂåÎĵÚ3-4½ÚÄÚÈݵÄÏàËÆ»òÀ×ͬ£©£ºÈô½«ÂåÎÄÓë°®ÎÄËùÓõıäÁ¿×öÒÔ϶ÔÓ¦£¨×óΪÂåÎıäÁ¿¼ÇºÅ£¬ÓÒΪ°®ÎıäÁ¿¼ÇºÅ£¬Ë«¼ýͷΪ¡°¶ÔÓ¦¡±µÄÒâ˼£©£º

    mathfrak{d}=£¨mathfrak{d}x£¬mathfrak{d}y£¬mathfrak{d}z£©¡¶==¡·£¨X£¬Y£¬Z£©£¬mathfrak{h}=£¨mathfrak{h}x£¬mathfrak{h}y£¬mathfrak{h}z£©¡¶==¡·£¨L£¬M£¬N£©£¬varrho¡¶==¡·¦Ñ£¬mathfrak{v}=£¨ux£¬uy£¬uz£©¡¶==¡·£¨ux£¬uy£¬uz£©£¬varrho¡¯¡¶==¡·¦Ñ¡¯£¬u¡¯=£¨ux¡¯£¬uy¡¯£¬uz¡¯£©¡¶==¡·£¨u¦Î£¬u¦Ç£¬u¦Æ£©£¬w¡¶==¡·v£¬k¡¶==¡·¦Â=1/¡Ì(1-v2/c2)£¬1/l2¡¶==¡·¦×£¨v£©£¬²¢½«ÂåÎÄÖÐËùÓбäÁ¿µÄʱ¼ä±ä»¯ÂʼǺż´¸Ã±äÁ¿µÄ¶¥²¿¼ÓÒ»µã»Ö¸´ÎªÆ½Ê±µÄ¶Ôʱ¼äÇóÆ«µ¼Êý¼ÇºÅ£¬Ôò°®ÎĵÚ9½Úδ×öÂåÂ××ȱ任֮ǰµÄ·ÇÆë´ÎÂó¿Ë˹Τ-ºÕ×È·½³ÌΪ£¨±¾×÷Õß×¢£ºÎªÁË·½±ã¶ÔÕÕ£¬ÕâÀï¸ø°®Îĵķ½³Ì×öÁ˱àºÅ£©

    £¨1/c£©[∂X/∂t+ux¦Ñ]=∂N/∂y-∂M/∂z¡­¡­£¨7a£©

    £¨1/c£©[∂Y/∂t+uy¦Ñ]=∂L/∂z-∂N/∂x¡­¡­£¨7b£©

    £¨1/c£©[∂Z/∂t+uz¦Ñ]=∂M/∂x-∂L/∂y¡­¡­£¨7c£©

    £¨1/c£©∂L/∂t=∂Y/∂z-∂Z/∂y¡­¡­£¨7d£©

    £¨1/c£©∂M/∂t=∂Z/∂x-∂X/∂z¡­¡­£¨7e£©

    £¨1/c£©∂N/∂t=∂X/∂y-∂Y/∂x¡­¡­£¨7f£©

    ÆäÖÐ

    ¦Ñ=∂X/∂x+∂Y/∂y+∂Z/∂z¡­¡­£¨8£©

    ÔòÕâÀï°®Îĵķ½³Ì£¨7a£©-£¨7c£©ÊÇÂåÎĵÚ3½Ú·½³Ì×飨2£©µÄµÚ¶þÐÐÄǸö·½³Ì

    rotmathfrak{h}=(1/c)(mathfrak{d}/∂t +varrhomathfrak{v})

    µÄ·ÖÁ¿ÐÎʽ£¬°®ÎÄ·½³Ì£¨7d£©-£¨7f£©ÊÇÂåÎÄ·½³Ì×飨2£©µÄµÚÈýÐÐÄǸö·½³Ì

    rotmathfrak{d}=(-1/c)mathfrak{h}/∂t

    µÄ·ÖÁ¿ÐÎʽ£¬¶ø°®ÎÄ·½³Ì£¨8£©ÊÇÂåÎÄ·½³Ì×飨2£©µÄµÚÒ»ÐÐ×ó±ßÄǸö·½³Ì

    divmathfrak{d}=varrho

    µÄ·ÖÁ¿»òµÈ¼ÛÐÎʽ¡£Çë×¢ÒâÔÚÂåÎĵÚ2½ÚµÄĩ⣬ÂåÂ××ÈÒѾ­¸ø³öÁË·½³Ì×飨2£©ÔÚÔ˶¯²ÎÕÕϵÄڵķÖÁ¿±íʾÐÎʽ£¬ËùÒÔÖ»Òª½«ÆäÖеÄÔ˶¯ËÙ¶ÈwÉèΪÁ㣬Ôò×Ô¶¯µ¼³ö°®ÎÄÒÔÉϵķ½³Ì£¨7a£©-£¨7f£©ÒÔ¼°·½³Ì£¨8£©¡£

     

    ¶ø°®ÎĵÚ9½Ú¾­¹ýÂåÂ××ȱ任֮ºóµÄ·ÇÆë´ÎÂó¿Ë˹Τ-ºÕ×È·½³ÌΪ

    (1/c)[∂X¡¯/∂¦Ó+ u¦Î¦Ñ¡¯]=∂N¡¯/∂¦Ç-∂M¡¯/∂¦Æ¡­¡­£¨9a£©

    (1/c)[∂Y¡¯/∂¦Ó+ u¦Ç¦Ñ¡¯]=∂L¡¯/∂¦Æ-∂N¡¯/∂¦Î¡­¡­£¨9b£©

    (1/c)[∂Z¡¯/∂¦Ó+ u¦Æ¦Ñ¡¯]=∂M¡¯/∂¦Î-∂L¡¯/∂¦Ç¡­¡­£¨9c£©

    (1/c)∂L¡¯/∂¦Ó=∂Y¡¯/∂¦Æ-∂Z¡¯/∂¦Ç¡­¡­£¨9d£©

    (1/c)∂ M¡¯/∂¦Ó=∂Z¡¯/∂¦Î-∂X¡¯/∂¦Æ¡­¡­£¨9e£©

    (1/c)∂ N¡¯/∂¦Ó=∂X¡¯/∂¦Ç-∂Y¡¯/∂¦Î¡­¡­£¨9f£©

    ÆäÖУ¨X¡¯£¬Y¡¯£¬Z¡¯£©Ó루L¡¯£¬M¡¯£¬N¡¯£©µÄ±í´ïʽÀ´×Ô°®ÎĵÚ6½ÚµÄÒò±äÁ¿Ìæ»»£¬¼´

    X¡¯=X£¬Y¡¯=¦Â£¨Y-£¨v/c£©N£©£¬Z¡¯=¦Â£¨Z+£¨v/c£©M£©¡­¡­£¨10a£©

    L¡¯=L£¬M¡¯=¦Â£¨M+£¨v/c£©Z£©£¬N¡¯=¦Â£¨N-£¨v/c£©Y£©¡­¡­£¨10b£©

    ¶ø¦Ñ¡¯¡¢u¦Î¡¢u¦Ç¡¢ÒÔ¼°u¦ÆÔò¶¨ÒåΪ

    ¦Ñ¡¯=∂X¡¯/∂¦Î+∂Y¡¯/∂¦Ç+∂Z¡¯/∂¦Æ=¦Â(1-uxv/c2)¦Ñ¡­¡­£¨11£©

    u¦Î=(ux-v)/(1-uxv/c2)£¬u¦Ç=uy/[¦Â(1-uxv/c2)]£¬u¦Æ=uz/[¦Â(1-uxv/c2)]¡­¡­£¨12£©

    ÔòÕâÀï°®Îĵķ½³Ì£¨9a£©-£¨9c£©ÊÇÂåÎĵÚ4½Ú·½³Ì×飨9£©µÄµÚ¶þÐÐÄǸö·½³Ì

    rot¡¯mathfrak{h}¡¯=(1/c)(mathfrak{d}¡¯/∂t¡¯+varrho¡¯u¡¯)

    µÄ·ÖÁ¿ÐÎʽ£¬°®Îĵķ½³Ì£¨9d£©-£¨9f£©ÊÇÂåÎÄ·½³Ì×飨9£©µÄµÚÈýÐÐÄǸö·½³Ì

    rot¡¯mathfrak{d}¡¯=(-1/c)mathfrak{h}¡¯/∂t¡¯

    µÄ·ÖÁ¿ÐÎʽ£¬°®ÎĵÚ6½ÚµÄÒò±äÁ¿Ìæ»»£¨10a£©-£¨10b£©ÏÔÈ»¾ÍÊÇÂåÎĵÚ4½Ú·½³Ì×飨6£©Ö®ÉϵÄÄǸö±ä»»¼´

    mathfrak{d}x¡¯=£¨1/l2£©mathfrak{d}x£¬mathfrak{d}y¡¯=£¨k/l2£©£¨mathfrak{d}y-£¨w/c£©mathfrak{h}z£©£¬mathfrak{d}z¡¯=£¨k/l2£©£¨mathfrak{d}z+£¨w/c£©mathfrak{h}y£©

    mathfrak{h}x¡¯=£¨1/l2£©mathfrak{h}x£¬mathfrak{h}y¡¯=£¨k/l2£©£¨mathfrak{h}y+£¨w/c£©mathfrak{d}z£©£¬mathfrak{h}z¡¯=£¨k/l2£©£¨mathfrak{h}z-£¨w/c£©mathfrak{d}y£©

    µ±l=1µÄÇéÐΡ£×¢Òâ°®ÎÄ·½³Ì£¨11£©¡¢£¨12£©ÓëÆäÔÚÂåÎÄÖеĶÔÓ¦¼´ÄÇÀïµÄ·½³Ì£¨7£©¡¢£¨8£©Æä±íʾʽ²¢·ÇÍêÈ«Ò»Ö£¬µ«ÕâÖÖ²»Ò»ÖÂÓÐÒ»¸ö·Ç³£ÌرðµÄÔ­Òò£¬¶øÇÒÕâ¼þʲ»ÊÇÏ÷Èõ¶øÊǼÓÇ¿Á˳­Ï®µÄÏÓÒÉ£¬Çë²ÎÔı¾ÆªµÄÏÂÒ»½Ú¡°ÅÓ¼ÓÀ³£¬ÏÁÒåÏà¶ÔÂÛÖÐÒ»¸ö±»¿ÌÒâÀäÂäÄËÖÁÒÅÍüµÄ½ÇÉ«¡±»òÄÇÀïµÄÓйØ×¢½â¡£

     

    ÕâÑù£¬°®ÎĵÚ9½ÚÓëÂåÎĵÚ3-4½ÚÏà¹ØÄÚÈݵÄÏàËÆ»òÀ×ͬ½¨Á¢ÁËÆðÀ´¡£

     

    ×¢12£¨¹ØÓÚ°®ÎĵÚ6½ÚÆë´ÎÂó¿Ë˹Τ-ºÕ×È·½³ÌµÄЭ±äÐÔÓëÂåÎĵÚ3-4½ÚÄÚÈݵÄÏàËÆ»òÀ×ͬ£©£ºÀàËÆÓÚ¡°×¢11¡±£¬°®ÎĵÚ6½ÚÆë´ÎÂó¿Ë˹Τ-ºÕ×È·½³ÌµÄ±ä»»¹ý³ÌÓëÂåÎĵÚ3-4½ÚµÄ¶ÔÓ¦±ä»»¹ý³ÌµÄÏàËÆ»òÀ×ͬ¿ÉÒÔ˵Ã÷ÈçÏ£º

    Ê×ÏÈ£¬°®ÎĵÚ6½ÚµÚÒ»×é·½³Ì¼´

    £¨1/c£©[∂X/∂t]=∂N/∂y-∂M/∂z¡­¡­£¨13a£©

    £¨1/c£©[∂Y/∂t]=∂L/∂z-∂N/∂x¡­¡­£¨13b£©

    £¨1/c£©[∂Z/∂t]=∂M/∂x-∂L/∂y¡­¡­£¨13c£©

    £¨1/c£©∂L/∂t=∂Y/∂z-∂Z/∂y¡­¡­£¨13d£©

    £¨1/c£©∂M/∂t=∂Z/∂x-∂X/∂z¡­¡­£¨13e£©

    £¨1/c£©∂N/∂t=∂X/∂y-∂Y/∂x¡­¡­£¨13f£©

    Öеģ¨13a£©-£¨13c£©ÊÇÂåÎĵÚ3½Ú·½³Ì×飨2£©µÄµÚ¶þÐÐÄǸö·½³Ì

    rotmathfrak{h}=(1/c)(mathfrak{d}/∂t +varrhomathfrak{v})

    µ±varrho=0ʱµÄ·ÖÁ¿ÐÎʽ£¬¶øÆäÖеģ¨13d£©-£¨13f£©ÓÖÊÇÂåÎÄ·½³Ì×飨2£©µÄµÚÈýÐÐÄǸö·½³Ì

    rotmathfrak{d}=(-1/c)mathfrak{h}/∂t

    µÄ·ÖÁ¿ÐÎʽ¡£

     

    Æä´Î£¬°®ÎĵÚ6½ÚµÄµÚÈý×é·½³Ì¼´

    (1/c)[∂X¡¯/∂¦Ó]=∂N¡¯/∂¦Ç-∂M¡¯/∂¦Æ¡­¡­£¨14a£©

    (1/c)[∂Y¡¯/∂¦Ó]=∂L¡¯/∂¦Æ-∂N¡¯/∂¦Î¡­¡­£¨14b£©

    (1/c)[∂Z¡¯/∂¦Ó]=∂M¡¯/∂¦Î-∂L¡¯/∂¦Ç¡­¡­£¨14c£©

    (1/c)∂L¡¯/∂¦Ó=∂Y¡¯/∂¦Æ-∂Z¡¯/∂¦Ç¡­¡­£¨14d£©

    (1/c)∂ M¡¯/∂¦Ó=∂Z¡¯/∂¦Î-∂X¡¯/∂¦Æ¡­¡­£¨14e£©

    (1/c)∂ N¡¯/∂¦Ó=∂X¡¯/∂¦Ç-∂Y¡¯/∂¦Î¡­¡­£¨14f£©

    ·Ö±ðÊÇÂåÎĵÚ4½Ú·½³Ì×飨9£©µÄµÚ¶þÐÐÄǸö·½³Ìµ±varrho=varrho¡¯=0µÄÇé¿öËù¶ÔÓ¦µÄ·ÖÁ¿ÐÎʽÒÔ¼°µÚÈýÐÐÄǸö·½³ÌµÄ·ÖÁ¿ÐÎʽ¡£

     

    ÔٴΣ¬°®ÎĵÚ6½ÚµÄµÚËÄ×é·½³Ì¼´

    X¡¯=¦×£¨v£©X£¬Y¡¯=¦×£¨v£©¦Â£¨Y-£¨v/c£©N£©£¬Z¡¯=¦×£¨v£©¦Â£¨Z+£¨v/c£©M£©¡­¡­£¨15a£©

    L¡¯=¦×£¨v£©L£¬M¡¯=¦×£¨v£©¦Â£¨M+£¨v/c£©Z£©£¬N¡¯=¦×£¨v£©¦Â£¨N-£¨v/c£©Y£©¡­¡­£¨15b£©

    ÔÚÇ°ÊöÓйرäÁ¿µÄ˵Ã÷ÏÂÍêÈ«¶ÔÓ¦ÓÚÂåÎĵÚ4½Ú·½³Ì×飨6£©Ö®ÉϵÄÄǸö±ä»»¼´

    mathfrak{d}x¡¯=£¨1/l2£©mathfrak{d}x£¬mathfrak{d}y¡¯=£¨k/l2£©£¨mathfrak{d}y-£¨w/c£©mathfrak{h}z£©£¬mathfrak{d}z¡¯=£¨k/l2£©£¨mathfrak{d}z+£¨w/c£©mathfrak{h}y£©

    mathfrak{h}x¡¯=£¨1/l2£©mathfrak{h}x£¬mathfrak{h}y¡¯=£¨k/l2£©£¨mathfrak{h}y+£¨w/c£©mathfrak{d}z£©£¬mathfrak{h}z¡¯=£¨k/l2£©£¨mathfrak{h}z-£¨w/c£©mathfrak{d}y£©

    ¶ø°®ÎĵÚ6½ÚµÄµÚÎå×é·½³Ì¼´

    X¡¯=X£¬Y¡¯=¦Â£¨Y-£¨v/c£©N£©£¬Z¡¯=¦Â£¨Z+£¨v/c£©M£©¡­¡­£¨10a£©

    L¡¯=L£¬M¡¯=¦Â£¨M+£¨v/c£©Z£©£¬N¡¯=¦Â£¨N-£¨v/c£©Y£©¡­¡­£¨10b£©

    ÔòÊÇ£¨15a£©-£¨15b£©µ±¦×£¨v£©=1µÄÇé¿ö¡£

     

    ×îºó£¬°®ÎĵÚ6½ÚµÄµÚ¶þ×é·½³Ì¼´

    (1/c)[∂X/∂¦Ó]=∂[ ¦Â£¨N-£¨v/c£©Y£©]/∂¦Ç-∂[¦Â£¨M+£¨v/c£©Z£©]/∂¦Æ¡­¡­£¨16a£©

    (1/c){∂[¦Â£¨Y-£¨v/c£©N£©]/∂¦Ó}=∂L/∂¦Æ-∂[¦Â£¨N-£¨v/c£©Y£©]/∂¦Î¡­¡­£¨16b£©

    (1/c){∂[¦Â£¨Z+£¨v/c£©M£©]/∂¦Ó}= ∂[¦Â£¨M+£¨v/c£©Z£©]/∂¦Î-∂L/∂¦Ç¡­¡­£¨16c£©

    (1/c)∂L/∂¦Ó=∂[¦Â£¨Y-£¨v/c£©N£©]/∂¦Æ-∂[ ¦Â£¨Z+£¨v/c£©M£©]/∂¦Ç¡­¡­£¨16d£©

    (1/c)∂ [ ¦Â£¨M+£¨v/c£©Z£©]/∂¦Ó=∂[¦Â£¨Z+£¨v/c£©M£©]/∂¦Î-∂X/∂¦Æ¡­¡­£¨16e£©

    (1/c)∂ [ ¦Â£¨N-£¨v/c£©Y£©]/∂¦Ó=∂X/∂¦Ç-∂[¦Â£¨Y-£¨v/c£©N£©]/∂¦Î¡­¡­£¨16f£©

    ÊÇÒò±äÁ¿Ìæ»»£¨10a£©-£¨10b£©Óë·½³Ì×飨14a£©-£¨14f£©µÄ½áºÏ¡£

     

    ÕâÑù£¬°®ÎĵÚ6½ÚÓëÂåÎĵÚ3-4½ÚÏà¹ØÄÚÈݵÄÏàËÆ»òÀ×ͬҲ½¨Á¢ÁËÆðÀ´¡£

     

    ×¢13£¨Óйذ®ÎĵÚ10½ÚµÄ×ÝÏòÖÊÁ¿ÓëºáÏòÖÊÁ¿¸ÅÄîÓëÂåÎĵÚ9½ÚµÄÏàËÆ»òÀ×ͬ£©£º°®ÎĵÚ10½Ú¸ø³öµÄ×ÝÏòÖÊÁ¿£¨longitudinal mass£©ÓëºáÏòÖÊÁ¿¹«Ê½£¨transverse mass£©·Ö±ðΪ

    mL=m¦Â3=m/[¡Ì£¨1-v2/c2£©]3£¬mT=m¦Â=m/£¨1-v2/c2£©

    ÒÔÉÏ×ÝÏòÖÊÁ¿ÓëºáÏòÖÊÁ¿µÄ¶¨ÒåÓëÂåÎĵÚ9½ÚµÄÓйض¨Òå

    m1=md£¨klw£©/dw=lmk3£¬m2=lmk

    ÆäÖÐm=£¨e2£©/£¨6¦Ðc2R£©£¬ÂÔÓв»Í¬£¬ÕâÊÇÒòΪ°®Òò˹̹ÔÚÈçϵĵç×ÓÔ˶¯µÄ¶¯Á¦Ñ§·½³Ì

    m¦Â3£¨d2x/dt2£©=¦ÅX=¦ÅX¡¯

    m¦Â2£¨d2y/dt2£©=¦Å¦Â£¨Y-£¨v/c£©N£©=¦ÅY¡¯

    m¦Â2£¨d2z/dt2£©=¦Å¦Â£¨Z+£¨v/c£©M£©=¦ÅZ¡¯

    ÖаѦÅX¡¯=¦ÅX¡¢¦ÅY¡¯=¦Å¦Â£¨Y-£¨v/c£©N£©¡¢¦ÅZ¡¯=¦Å¦Â£¨Z+£¨v/c£©M£©¶¨Òå³ÉÑØ×ÅÈý¸ö×ø±êÖá·½ÏòµÄ×÷ÓÃÁ¦·ÖÁ¿ÁË£¬µ«¼ÙÈç°ÑÁ¦µÄÈý¸ö·ÖÁ¿·Ö±ð¶¨ÒåΪ

    ¦ÅX¡¯/1=¦ÅX£¬¦ÅY¡¯/¦Â=¦Å£¨Y-£¨v/c£©N£©£¬ÒÔ¼°¦ÅZ¡¯/¦Â=¦Å£¨Z+£¨v/c£©M£©

    Ôò°®Òò˹̹ÓëÂåÂ××ÈÓйØ×ÝÏòÖÊÁ¿ÓëºáÏòÖÊÁ¿µÄ¶¨Òå±äµÃÍêÈ«Ò»Ö£¬ÊÂʵÉÏ£¬ºóÒ»¶¨ÒåÕýÊÇÂåÎĵÚ6½ÚµÄ·½³Ì£¨20£©¸ø³öµÄ£¬Í¬Ê±Ò²ÊÇ°®ÊÏÔÚ1905ÄêÒÔºóµÄÎÄÕÂËù²ÉÄɵģ¬±ÈÈç²Î¼û¡¾CPAE2¡¿Îļþ23µÄ×¢41¡¢42ÓëÎļþ47µÄµÚ8½ÚÒÔ¼°ÄÇÀïµÄ×¢41¡¢43ÒÔ¼°49¡£

     

    ×¢14£¨¹ØÓÚ°®ÎĵÚ4½ÚÓйس¤¶ÈÊÕËõµÄ½á¹ûÓëÂåÎĵÚ8½ÚµÄÏàËÆ»òÀ×ͬ£©£º°®ÎĵÚ4½Ú¸ø³öµÄ³¤¶ÈÊÕËõ½á¹û£¨R¡Ì£¨1-v2/c2£©£¬R£¬R£©ÊÇÂåÎĵÚ8½ÚÓйØÔ˶¯µç×ÓÔÚ¸÷¸ö×ø±êÖá·½ÏòÉϵıäÐνá¹û£¨1/£¨kl£©£¬1/l£¬1/l£©µÄÍêÈ«¶ÔÓ¦£¬¶ø°®ÎĵÚ4½Ú¿ªÍ·µÄÄǸöÇòÐθÕÌåµÄ±äÐι«Ê½

    x2/[¡Ì£¨1-v2/c2£©]2+y2+z2=R2

    ÏÔÈ»ÓÖÓëÂåÎĵÚ5½ÚĩβµÄÄǸö±í´ïʽ

    r¡¯=l¡Ì[k2£¨x-x1£©2+£¨y-y1£©2+£¨z-z1£©2]

    ÍêÈ«ÀàËÆ¡£

     

    ×¢15£¨¹ØÓÚ°®ÎĵÚ3½ÚÓëµÚ6½ÚÖеı任³£ÊýÓëÂåÎĵÚ10½ÚµÄÏàËÆ»òÀ×ͬ£©£ºÔÚ°®ÎĵÚ3½ÚÓëµÚ6½ÚÖУ¬¦×£¨v£©=1£¬¶øÔÚÂåÎĵÚ10½ÚÖУ¬l=1£¬¶ø¸ù¾ÝÇ°Êö˵Ã÷£¬°®ÎĵĦף¨v£©ÓëÂåÎĵÄ1/l2ÆäʵÊDZ˴˶ÔÓ¦µÄ³£Êý¡£×¢Òâ°®Òò˹̹ÓëÂåÂ××ÈÈ·¶¨ÒÔÉϳ£ÊýʱËùÓõķ½·¨²¢²»Ïàͬ¡£

     

    ×¢16£¨¹ØÓÚ°®ÎĵĹâËÙ³£ÊýÔ­ÀíÆäʵÖÊÄËÊÇÂåÂ××ȵÄÒÔÌ«Á÷¼ÙÉ裩£ºÈç°®Òò˹̹ÔøÇ׿Ú˵¹ýµÄ£¬¡°ÎªÁËÌî²¹Õâ¸ö¿Õ°×£¬ÎÒÒýÈëÁ˹âËÙ³£ÊýÔ­Àí£¬ËüÊÇÎÒ´ÓÂåÂ××Ⱦ²Ö¹ÒÔÌ«ÀíÂÛÖнèÀ´µÄ£¬Í¬Ïà¶ÔÐÔÔ­ÀíÒ»Ñù£¬Õâ¸öÔ­Àí°üº¬ÁËÒ»¸öËƺõÖ»ÓÐͨ¹ýÓйØʵÑ飨Èç·ÆË÷£¨Fizeau£©¡¢ÀÍÀ¼µÂ£¨Rowland£©µÈÈ˵ÄʵÑ飩²Å¿ÉÒÔºËʵµÄ¼ÙÉ衱£¨¡¾Einstein1912¡¿£©¡£Êµ¼ÊÉÏ£¬ÂåÂ××ÈÒÔÌ«ÀíÂÛÖв¢ÎÞרÃŵĹâËÙ³£ÊýÔ­Àí£¬Õâ¸öÀíÂÛÖ»ÓÐÒ»¸ö¾ø¶Ô¾²Ö¹ÒÔÌ«£¨»òÒÔÌ«Á÷£©¼ÙÉ裬¼´ÔÚÕâ¸ö¾ø¶Ô¾²Ö¹µÄÒÔÌ«²ÎÕÕϵÄÚ¹âÐźÅÊÇÒÔ³£ÊýËÙ¶Èc´«²¥µÄ£¬¶øÔÚÏà¶ÔÓÚÕâ¸öÒÔÌ«²ÎÕÕϵÒÔËÙ¶ÈvÔ˶¯µÄ¹Û²ìÕß¿´À´£¬¹âÐźÅÈ´ÊÇÒÔËÙ¶Èc+v»òc-vµÄËٶȴ«²¥µÄ£¬ÏÔÈ»£¬Èç¹û°®Òò˹̹Ëù˵Êôʵ£¬¼´¹âËÙ³£ÊýÔ­ÀíµÄÈ·ÊÇËû¡°½èÀ´µÄ¡±¶«Î÷£¬ÄÇôËûµÄËùν¹âËÙ³£ÊýÔ­ÀíÖ»»á¸úÒÔÉÏËù˵µÄÒÔÌ«Á÷¼ÙÉèÓÐ×ÅÏàͬµÄÒâ˼ÒÔ¼°ÎïÀíºó¹û£»ÊÂʵÉÏ£¬°®Êϲ»½öÊÇÕâô˵µÄ£¬¶øÇÒËûÒ²µÄÈ·ÊÇÕâô×öµÄ£¬Õâ¾ÍÊÇΪºÎËûÔÚ°®ÎÄ¡¾Einstein1905¡¿µÄµÚ3½Ú¶à´ÎʹÓÃc+vÓëc-vµÄÕæÕýÔ­Òò¡£ÏÔÈ»£¬Ö÷Á÷ÎïÀíѧ½çÓëÖ÷Á÷ýÌåΪÁËÈð®Òò˹̹ÓëÂåÂ××È»òÅÓ¼ÓÀ³µÄ¹ÛµãÇø·Ö¿ªÀ´ÒÔ±ãÉñ»¯Ëû£¬»òÕßÈÃËûÌӱܳ­Ï®»òÒòÏ®µÄÏÓÒÉ£¬±ã¹ÊÒâŤÇú°®Òò˹̹ԭÀ´µÄÒâ˼£¬µ«ÊÇÕâÑù×öȴŪÇɳÉ×¾µØ°ÑÒ»¸ö±¾À´»¹ÓпÉÄÜÕýÈ·µÄ¶«Î÷ÍêÈ«ÍÆÏòÁËÃýÎ󣬶ԴËÎÒÃÇÒÔºó»¹»áרÃÅÌÖÂÛ¡£

     

    ×¢17£¨¹ØÓÚ°®ÎĵÚ6½ÚÓëµÚ9½ÚÓйؽá¹ûÔÚ±íÊöÉϵÄÖØ´óÊè©£©£ºÊÂʵÉÏ£¬°®ÎÄ¡¾Einstein1905¡¿µÚ6½ÚµÄÆë´ÎÂó¿Ë˹Τ-ºÕ×È·½³Ì

    £¨1/c£©∂X/∂t=∂N/∂y-∂M/∂z¡­¡­£¨13a£©

    £¨1/c£©∂Y/∂t=∂L/∂z-∂N/∂x¡­¡­£¨13b£©

    £¨1/c£©∂Z/∂t=∂M/∂x-∂L/∂y¡­¡­£¨13c£©

    £¨1/c£©∂L/∂t=∂Y/∂z-∂Z/∂y¡­¡­£¨13d£©

    £¨1/c£©∂M/∂t=∂Z/∂x-∂X/∂z¡­¡­£¨13e£©

    £¨1/c£©∂N/∂t=∂X/∂y-∂Y/∂x¡­¡­£¨13f£©

    ²¢·ÇÏñ°®Òò˹̹ËùÉù³ÆµÄÄÇÑù£¬¿ÉÒÔͨ¹ýÂåÂ××ȱ任

    ¦Î=¦Â(x-vt),¦Ç=y,¦Æ=z,¦Ó=¦Â(t-vx/c2) ¡­¡­£¨17£©

    Ö±½Ó»¯ÎªÈçÏÂÐÎʽ

    (1/c)∂X/∂¦Ó=∂[ ¦Â£¨N-£¨v/c£©Y£©]/∂¦Ç-∂[¦Â£¨M+£¨v/c£©Z£©]/∂¦Æ¡­¡­£¨16a£©

    (1/c)∂[¦Â£¨Y-£¨v/c£©N£©]/∂¦Ó=∂L/∂¦Æ-∂[¦Â£¨N-£¨v/c£©Y£©]/∂¦Î¡­¡­£¨16b£©

    (1/c)∂[¦Â£¨Z+£¨v/c£©M£©]/∂¦Ó= ∂[¦Â£¨M+£¨v/c£©Z£©]/∂¦Î-∂L/∂¦Ç¡­¡­£¨16c£©

    (1/c)∂L/∂¦Ó=∂[¦Â£¨Y-£¨v/c£©N£©]/∂¦Æ-∂[ ¦Â£¨Z+£¨v/c£©M£©]/∂¦Ç¡­¡­£¨16d£©

    (1/c)∂ [ ¦Â£¨M+£¨v/c£©Z£©]/∂¦Ó=∂[¦Â£¨Z+£¨v/c£©M£©]/∂¦Î-∂X/∂¦Æ¡­¡­£¨16e£©

    (1/c)∂ [ ¦Â£¨N-£¨v/c£©Y£©]/∂¦Ó=∂X/∂¦Ç-∂[¦Â£¨Y-£¨v/c£©N£©]/∂¦Î¡­¡­£¨16f£©

    ÕâÊÇÒòΪ£¬ÎªÁËÈ·±£ÒÔÉϱ任Äܹ»³É¹¦£¬ÎÒÃÇ»¹ÐèÒªÒÔÏÂÁ½¸öÔÚ°®ÎĵÚ6½ÚÖÐÍêȫȱʧµÄ·½³Ì

    ∂X/∂x+∂Y/∂y+∂Z/∂z=0¡­¡­£¨18a£©

    ÒÔ¼°

    ∂L/∂x+∂M/∂y+∂N/∂z=0£¨18b£©

    Ö»Óн«·½³Ì£¨18a£©-£¨18b£©ÕâÁ½¸ö·½³ÌÒ²×öÁ˱任֮ºó£¬²¢½«±ä»»½á¹ûÓë¶Ô£¨13a£©-£¨13f£©µÄ±ä»»½á¹ûÏà½áºÏ£¬²ÅÄܵóö°®ÎÄÖеÄ×îÖÕ½á¹û¼´·½³Ì×飨16a£©-£¨16f£©£¬µ«·´Ö®£¬Èç¹ûÈÓµôÁË·½³Ì£¨18a£©-£¨18b£©ÒÔ¼°¶ÔËüÃǵı任£¬ÄÇôҪ°Ñ£¨13a£©-£¨13f£©Í¨¹ýÂåÂ××ȱ任£¨17£©Ö±½Ó±ä»»Îª·½³Ì×飨16a£©-£¨16f£©±ãÊDz»¿ÉÄܵġ£

     

    ͬÀí£¬°®ÎĵÚ9½ÚËù˵µÄ¶Ô·ÇÆë´ÎÂó¿Ë˹Τ-ºÕ×È·½³ÌµÄ±ä»»Ò²ÊÇÎÞ·¨³É¹¦µÄ£¬ÒòΪÔÚÄÇÀïËäÈ»£¨18a£©µÄ¶ÔÓ¦½á¹û¼´·½³Ì

    ¦Ñ=∂X/∂x+∂Y/∂y+∂Z/∂z¡­¡­£¨8£©

    ³öÏÖÁË£¬µ«ÊÇ·½³Ì£¨18b£©ÈÔȻȱʧ¡£ËùÒÔ°®ÊÏËù˵µÄ±ä»»ÈÔÈ»ÊÇÒ»¸ö²»¿ÉÄܵÄÊÂÇé¡£

     

    ÏÔÈ»£¬Èç¹ûÓйؽá¹ûÊÇ°®Òò˹̹µÄÔ­´´µÄ»°£¬»òÕßËûËäÈ»ÉæÏÓ³­Ï®µ«ÊÇÈ´¶ÔÓйؽá¹û½øÐÐÁËÖÜÃÜϸÖµÄÔËËã»òÑéË㣬ÄÇôÒÔÉÏÕâÑùµÄÖØ´óÊè©ÊDz»¿ÉÄÜ·¢ÉúµÄ£¬ËùÒÔÎÒÃDzŶÏÑÔ£¬°®ÎIJ»µ¥Êdz­Ï®ÁËÂåÎĵĽá¹û£¬¶øÇÒ³­Ï®ÕßÔÚ×÷±×ʱÉõÖÁÁ¬°ÑÓйؽá¹ûÑéËãÒ»±éµÄ¹¦·ò¶¼ÀÁµÃÈ¥×ö£¬µ±È»ËûÒ²¿ÉÄÜ×öÁËÕâÑùµÄŬÁ¦£¬µ«Êǽá¹ûȴûÓгɹ¦¡£×ÜÖ®£¬ÕâÑùµÄÖØ´óÊè©ÏÔÈ»¾ÍÊÇÏÓÒÉÈËÉæÏÓ³­Ï®Ê±ËùÁôϵÄÃ÷ÏÔÆÆÕÀÒÔ¼°ÖØ´óÖ¤¾ÝÖ®Ò»£¨ËùÒÔ¾ü̳Éϵġ°Óн±Õ÷´ð¡±¾ÍÊÇרÃÅΪijЩäĿ³çÑóÕß»òÃÔÐÅËùνѧÊõȨÍþÕßËùÉèϵÄÏÝÚ壺-£©£©¡£

     

    ×¢18£¨¹ØÓÚ°®ÎÄËùÁôϵÄÆÆÕÀ²»Ö»ÊÇÒÔÉÏÕâЩ£©£ºÊÂʵÉÏ£¬°®Òò˹̹ËùÉæÏÓ³­Ï®µÄ²»Ö»ÊÇÂåÂ××ȵÄÕâƪÎÄÕ£¬Ëû»¹ÉæÏÓ³­Ï®ÅÓ¼ÓÀ³µÄÓйع¤×÷£¬¶øÇÒµ¥´Ó˼ÏëÐÔÉÏ¿´£¬Æä³­Ï®³Ì¶ÈÉõÖÁ¸üÑÏÖØ£¬Çë²ÎÔı¾ÆªµÄÏÂÒ»½Ú¡°ÅÓ¼ÓÀ³£¬Ò»¸ö±»¿ÌÒâÀäÂäÉõÖÁÒÅÍüµÄ½ÇÉ«¡±¡£

     

    ×¢19£¨¹ØÓÚÂåÂ××È1904ÄêÒÔÇ°µÄ¹¤×÷ÓëÏà¶ÔÐÔÔ­Àí²¢²»Ò»Ö£©£ºÕýÈç°®ÎĵÚ9½ÚËùÃ÷ʾµÄÄÇÑù£¬ÅжÏÒ»¸öµç´ÅÀíÂÛÊÇ·ñÓëÏà¶ÔÐÔÔ­ÀíÒ»Öµĸù±¾±ê×¼ÊÇ¿´ËüÔÚÂåÂ××ȱ任ÏÂÊÇ·ñ±£³ÖÐÎʽ²»±ä£¬¶øÔÚºöÂÔ¸ö±ðϸ½Ú´íÎóµÄÌõ¼þÏ£¨±¾×÷Õß×¢£º±¾ÆªµÄÏÂÒ»½Ú»á½âÊÍÕâÒ»µã£©£¬ÂåÊÏ1904ÄêµÄ¹¤×÷ÊÇÂú×ãÕâÒ»±ê×¼µÄ£¬ËùÒÔ¿ÉÒÔ¶ÏÑÔËüÓëÏà¶ÔÐÔÔ­ÀíÒ»Ö£¬µ«ÊǶÔÓÚÂåÂ××È1904ÄêÒÔÇ°µÄ¹¤×÷À´Ëµ£¬ÆäËùÓõı任²»ÊÇÑϸñµÄÂåÂ××ȱ任£¬¶øÆä±ä»»Ç°ºóµÄÂó¿Ë˹Τ-ºÕ×È·½³ÌÒ²²»¾ßÓÐÑϸñµÄÐÎʽ²»±äÐÔ¡£²Î¼û¡°Ë¼¿¼Óë̽Ë÷¡±ÖеÄÓйØÏ°Ìâ¡£

     

    ×¢20£¨¹ØÓÚÂåÎĵĽá¹ûÓëÏà¶ÔÐÔÔ­ÀíÒ»ÖµĽáÂÛÖ»ÓÐÔÚÔĶÁÁËÂåÎÄÔ­ÎIJſÉÒԵóö£©£ºÓÉÓÚÒÑÖªµÄËùÓзÖÎö»òÆÀÂÛÎÄÕ²»×¨ÃÅÌÖÂÛÂó¿Ë˹Τ-ºÕ×È·½³ÌµÄЭ±äÐÔÒÔ¼°Ïà¶ÔÐÔÔ­ÀíµÄÄÚÈÝ£¬ËùÒÔ°®Òò˹̹ÓйØÂåÎĵĽá¹ûÓëÏà¶ÔÐÔÔ­ÀíÒ»ÖµĽáÂÛÎÞ·¨Í¨¹ý¼ä½Ó֪ϤÂåÎĵÄÓйØÄÚÈݶøµÃ³ö¡£µ«Æäʵ°®ÊÏ»¹ÓÐÒ»ÖÖ²»ÔĶÁÂåÂ××ȵÄÔ­ÎĶøµÃ³öÒÔÉϽáÂÛµÄ;¾¶£¬Õâ¾ÍÊÇÔĶÁÅÓ¼ÓÀ³·¢±íÓÚ1905ÄêµÄÎÄÕ¡¾Poincare1905¡¿£»ÊÂʵÉÏ£¬ÎÒÃÇÖ¸Ôð°®ÊÏËùÉæÏÓ³­Ï®ÅÓ¼ÓÀ³µÄÕýÊÇÕâƪÎÄÕ¡£ËùÒÔ¸ü¶àϸ½ÚÇë²Î¼û±¾ÆªµÄÏÂÒ»½Ú¡°ÅÓ¼ÓÀ³£¬Ò»¸ö±»¿ÌÒâÀäÂäÉõÖÁÒÅÍüµÄ½ÇÉ«¡±¡£

     

    ÕâÑù£¬°®Òò˹̹µÄ¾­µäÏÁÒåÏà¶ÔÂÛÎÄÕ¡¾Einstein1905¡¿ËùÉæÏÓ³­Ï®µÄ²»Ö»ÊÇÒ»¸öÈ˵Ť×÷£¬¶øÊÇÁ½¸öÈ˵Ť×÷£¬¶øÕâÁ½ÈËÇ¡Ç¡¶¼Êǵ±Ê±ÀíÂÛÎïÀíѧ½çÈçÈÕÖÐÌìµÄÈËÎ¸ü¶àϸ½Ú²Î¼ûÏÂÒ»½Ú¡£

0%(0)
0%(0)
¡¡¡¡¡¡¡¡ÓÐÃ÷ÏÔ²î±ð£¬±¾ÆªµÄÏÂÒ»½Ú»áÏêÊö¡£  /ÎÞÄÚÈÝ - acarefreeman 10/14/15 (475)
¡¡¡¡¡¡¡¡¡¡¡¡Æä´Î£¬good sniperÍøÓÑ˵£º¡°ÎÒÊÇÍâÐУ¬Ã»·¨ÅжÏÄã - acarefreeman 10/13/15 (550)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¹ØÓÚÂÛµãÓëÂ۾ݵÄÔ­´´ÐÔÎÒÔÝʱÏȲ»Ìṩ¸ü¶àÇé¿ö£¬´ó¼Ò¿ÉÒÔ - acarefreeman 10/14/15 (578)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÓÐÁËÎó½â£¬´ËÌùÔÝÍ£¡£  /ÎÞÄÚÈÝ - acarefreeman 10/14/15 (529)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡×¢£ºÒÔÉϵÄËùÓÐÆÀÂÛ¶¼¼Ù¶¨ÁËgood sniper¾ßÓÐÀí¹¤¿Æ - acarefreeman 10/14/15 (531)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÎҵøϿì³öÀ´ËµÁ½¾ä£¬·ñÕßÕâÁº×ӾͽáÏÂÁË - good sniper 10/14/15 (620)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ð»Ð»³ÎÇ壬ÄǾÍÊÇÈÏʶÆðµã²»Ò»Ñù£¬ÎÒ¹À¼ÆÒ»ÏÂ×ÓÄÑÒÔ˵Ç壬ËùÒÔ - acarefreeman 10/14/15 (774)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¾À´í£º¡°ÎÒ²»ÏñÄ㡱ӦΪ¡°ÎÒ²»ÏàÐÅÄ㡱¡£  /ÎÞÄÚÈÝ - acarefreeman 10/14/15 (553)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÎÒÏȸæËßÄ㣺²»¹ÜÊdz­Ï®ÎÊÌ⻹ÊÇ¿Æѧз¢ÏÖÎÊÌⶼ°üº¬ÁËÎÒ´óÁ¿µÄ - acarefreeman 10/14/15 (544)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡²¹³äÒ»µã£º¹ýÈ¥¼¸ÖÜÄںܶàÈÕÒ¹¶¼»¨·ÑÔÚÊÕ¼¯¡¢ÉóÊÓ¡¢×éÖ¯¡¢Ë¼¿¼ - acarefreeman 10/14/15 (599)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¾À´í£ºÎÄÖС°Ò»¸ö»ùÓÚ³£ÊýµÄÅжϡ±Ó¦Îª¡°Ò»¸ö»ùÓÚ³£Ê¶µÄÅжϡ±¡£  /ÎÞÄÚÈÝ - acarefreeman 10/13/15 (521)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÄÇÎÒ¼Ó¹¤µÄÒªÊÇÖйú¿Æѧ¼ÒµÄÂÛµã»òÂÛ¾ÝÄØ£¿ÄãÓÖÈçºÎ¿´£¿  /ÎÞÄÚÈÝ - acarefreeman 10/13/15 (551)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÐÐÁË£¬»ù±¾ÉÏÃ÷°×ÄãµÄÎÄÕÂÊÇÔõô»ØÊÂÁË¡£ - good sniper 10/13/15 (575)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ð»Ð»£¬ÄÇÎÒÒ²²»Ó÷ѹ¦·òÁË¡£  /ÎÞÄÚÈÝ - acarefreeman 10/13/15 (521)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Å¶£¬ÍüÁ˽»´úÒ»¾ä£ºÈκÎʱºò¶¼»¶Ó­Äã°Ñ×Ô¼ºÖªµÀµÄÇé¿öºÁÎÞ±£ÁôµØ - acarefreeman 10/13/15 (516)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÈÃÎҸɴà°ÑËüÌôÃ÷°É£ºÈç¹ûÄã¹ØÐĵÄÕæµÄÖ»ÊÇÎҵŤ×÷µÄÔ­´´ÐÔÎÊÌâ - acarefreeman 10/13/15 (527)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ñо¿¾ÍÊÇÓÉ±í¼°ÀïÓÉdzÈëÉÓɻ㼯²»Í¬¹Ûµãµ½ÑÓÉìºÍ·¢ÏÖÐÂÀíÂÛ¡£ - ´ó¹úÓдó¹úµÄÖǻ۠10/13/15 (585)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ËµµÃºÃ¡£²»¹ýÂýÂýÀ´£¬ÏàÐźö«Î÷Ò»¶¨ÔÚºóÍ·¡£ - acarefreeman 10/13/15 (540)
±ê Ìâ (±ØÑ¡Ïî):
ÄÚ ÈÝ (Ñ¡ÌîÏî):
ʵÓÃ×ÊѶ
±±ÃÀ×î´ó×îÈ«µÄÕÛ¿Û»úƱÍøÕ¾
ÃÀ¹úÃû³§±£½¡Æ·Ò»¼¶´úÀí,»¨Æì²Î,άËûÃü,ÓãÓÍ,ÂÑÁ×Ö¬,30ÌìÍË»õ±£Ö¤.Âò°ÙÃâÓÊ.
Ò»Öܵã»÷ÈÈÌû ¸ü¶à>>
Ò»Öܻظ´ÈÈÌû
ÀúÊ·ÉϵĽñÌ죺»Ø¸´ÈÈÌû
2014: ŦԼʱ±¨ÎÄ£ºÊÇʱºò¶ÔÖйú¶¯Õæ¸ñµÄÁË z
2014: ÖÐ¶í½«½¨7000¹«ÀïÌú· Ī˹¿Æµ½±±¾©
2013: ¸É¹ýµÄ¾ÙÊÖ
2013: Àî¼ÒÒª³öÊ£¿¹úÄÚýÌåÈ÷ŹúÍâ¡°Ò¥ÑÔ¡±
2012: Öйúº½Ä¸²»Ó¦¸ÃÈÃËÄ°û̥ͬ½¢·þÒÛ£¡ zt
2012: ר¼Ò£ºÃÀ¶Ô¶«ÑÇÕÆ¿ØÁ¦Ï½µ ÐÂÒ»ÂÖ¶¯µ´»ò
2011: ³¯ÏÊΪʲô·¢Õ¹µ½ÏÖÔÚ¾­¼Ã±ôÁÙ±ÀÀ£
2011: Ò»¸öÃåµéØô°îÅ®º¢¿´ÖÐÃå±ß¾³Õ½ÂÔ £¨Í¼£©
2010: µöÓ㵺ÎÊÌâÓпÉÄܶñ»¯
2010: Ï£À°ÈËÂÞÂíÈ˵ÄÅ«Á¥ÖÆÆäʵÔÚµ±Ê±ÊǺÜÏÈ