·±ÌåÖÐÎÄ  
 
°æÖ÷£ºbob
 ¡¤ ¾ÅÑôÈ«ÐÂÃâÇåÏ´ÐͶ¹½¬»ú È«ÃÀ×îµÍ
 
ÍòÄÜÊÜÌåÊÊÅäÆ÷--йÚSpikeµ°°× 4
Ëͽ»Õß:  2023Äê11ÔÂ03ÈÕ03:40:16 ÓÚ [ÊÀ½çʱÊÂÂÛ̳] ·¢ËÍÇÄÇÄ»°


ÖØÊÓ¡¢¾¯Ìèת»ùÒòÔÚ²¡¶¾¡¢²¡Ô­ÌåΣÏÕÑо¿ÖеÄÓ¦Óã¬ÌرðÊÇÔÚ¹Ú×´²¡¶¾GoFÑо¿ÖеÄÓ¦Ó᣹Ú×´²¡¶¾¾ßÓÐ×î´óµÄRNA»ùÒò×飬¿ÉÌṩ³äÔ£µÄת»ùÒò¸ÄÔì¿Õ¼ä£¬±ãÓÚÒýÈë¡¢Ìæ´ú¡¢½è¼ø¡¢Ä£·Â¡¢µþ¼Ó¡¢ÜöÝÍ´óÁ¿¿çÎïÖÖ»ùÒò£¨¹Ú×´²¡¶¾»ùÒò¡¢·Ç¹Ú×´²¡¶¾»ùÒò¡¢Ö²¡Ï¸¾ú»ùÒò¡¢¼ÄÉú³æ»ùÒò¡¢ÉúÎﶾËØ»ùÒò¡¢Ò½ÁÆÒ©¼Á»ùÒò¡¢ÈËÀà»ùÒò£©£¬±ãÓÚÒýÈ롢ģ·Â¡¢¼¯³É¸÷ÖÖ¸ÐȾ¡¢Ö²¡¡¢ÃâÒ߶Կ¹£¨ÃâÒßÆÆ»µ¡¢ÃâÒßÌӱܺÍÆÁ±Î¡¢ÃâÒ߸ÉÈÅ¡¢ÃâÒßÒÖÖÆ£©»úÖÆ¡£µÚÒ»¸öÀ¨ºÅÄÚÁоٵĿçÎïÖÖ»ùÒò»òÏàËÆ»ùÒòÔÚSARS-CoV-2ÖÐÈ«¶¼³öÏÖÁË£¬µÚ¶þ¸öÀ¨ºÅÖеÄÃâÒ߶Կ¹»úÖÆSARS-CoV-2Ҳȫ²¿¾ß±¸£¬SARS-CoV-2»¹ÓµÓÐÁîËùÓв¡¶¾¡¢ËùÓв¡Ô­ÌåÍû³¾Äª¼°µÄ³¬¹ý30ÖÖÈËÀàϸ°ûĤÊÜÌåµ°°×½áºÏÄÜÁ¦£¬ºÍ¸ü¶àµÄÒ»°ãÈËÀàÒò×Ó£¨µ°°×ÖÊ¡¢¶àëÄ£©½áºÏÄÜÁ¦¡£

½ÓÐø£º¡°ÍòÄÜ¡±ÊÜÌåÊÊÅäÆ÷--йÚSµ°°× 3

-

8¡¢Hepcidin£¨Ìúµ÷ËØ£©

-

Hepcidin£¨Ëõдhepc£©£¬Ìúµ÷ËØ£¬ÊÇÓɸÎÔࣨ¸Îϸ°û)ºÏ³É¡¢·ÖÃÚµÄÒ»ÖÖº¬25¸ö°±»ùËᣨ²Ð»ù£©µÄС·Ö×Ó¶àëÄÀ༤ËØ£¬ÈËÀàÌúµ÷ËØÓÉ19ºÅȾɫÌåÉϵÄHamp»ùÒò±àÂë¡£

Ìúµ÷ËØ£¨Hepcidin£¬hepc£©ÓÐÈýÖÖÐÎʽ£ºHepc25¡¢Hepc20¡¢Hepc22£¬Ç°Á½ÕßÊÇHepcµÄÖ÷Òª´æÔÚÐÎʽ£¬ºó¶þÕß¿ÉÄÜÊÇHepc25µÄ½µ½â²úÎï¡£ÈËÀàÌúµ÷ËØËæѪҺÔÚÌåÄÚÑ­»·£¬ÒÔ²»Í¬·á¶Èˮƽ´æÔÚÓÚ»úÌå¸÷×éÖ¯ÖУ¬²¢¿É´©Í¸Ï¸°ûĤ½ø³öϸ°û¡£²¿·ÖÌúµ÷ËØËæÄòÒºÅųöÌåÍâ¡£

PDB_1m4f_EBI_75p_clip.JPG

hepcidin-25¿Õ¼äÐÎ̬ʾÒâͼ

Ìúµ÷ËØÊÇÈËÀàºÍ²¸È鶯ÎïÌú´úл¡¢ÌúÎÈ̬¡¢ÌúƽºâµÄ¹Ø¼üµ÷½ÚÒò×ÓÖ®Ò»£¬ËüÒÖÖÆÌúÎüÊÕϸ°û¡¢Ìú»ØÊÕϸ°û¡¢Ìú´¢´æϸ°û¡¢ÌúÖÐתϸ°ûµÈϸ°ûµÄÌúÊÍ·Å£¬Ïµ÷ѪҺÖеÄÑ­»·Ìú£¬ÊÇÌú´úлµÄ¸ºÏòµ÷½ÚÒò×Ó¡£

Ìúµ÷ËضÔÌú´úлµÄ¸ºÏòµ÷½Ú£¬¼´¶ÔÌúÊͷŵÄÒÖÖÆ£¬¶ÔÑ­»·ÌúµÄϵ÷ÊÇͨ¹ý½áºÏ¡¢ÄÚ»¯¡¢½µ½âÌúתÔ˵°°×À´ÊµÏֵġ£Ìúµ÷ËØÄܹ»½áºÏϸ°ûĤÉϵÄÌúתÔ˵°°×£¬½éµ¼ºóÕßÄÚÉ㣨Ìúµ÷ËØÓëÌúתÔ˵°°×½áºÏºó£¬¶þÕߵĸ´ºÏÌ彫±»ÉãÈëϸ°û£©²¢ÔÚϸ°ûÄÚ½µ½â¡£ÌúתÔ˵°°×ÊÇϸ°ûÊÍ·Å¡¢Êä³öÌúµÄΨһ¹¤¾ß£¬ÌúתÔ˵°°×µÄ½µ½â¡¢È±·¦½«Ê¹Ð¡³¦ÉÏƤϸ°û£¨ÌúÎüÊÕϸ°û£©¡¢¾ÞÊÉϸ°û£¨Ìú»ØÊÕϸ°û£¬ÍÌÊÉË¥Àϵĺìϸ°û£¬»ØÊÕºìϸ°ûÄÚµÄÌúÀë×Ó£©¡¢¸Îϸ°û£¨Ìú´¢´æϸ°û£©¡¢Ì¥ÅÌϸ°û£¨ÏòÌ¥¶ù¹©Ó¦ÌúµÄÖÐתվ£©µÈϸ°ûµÄÌúÊÍ·Å¡¢ÌúÊä³ö±»ÒÖÖÆ£¬¸ü¶àµÄÌú½«±»±£Áô¡¢¸ôÀëÔÚ£¨ÕâЩ£©Ï¸°ûÄÚ£¬Êͷŵ½¸ÎÞ²ÂöµÈѪ¹Ü£¬½øÈëѪҺѭ»·Ïò¸÷×éÖ¯ÊäË͵ÄÌú½«¼õÉÙ¡£Ìúµ÷ËØÒ²ÒÖÖÆС³¦µÄÌúÎüÊÕ£¬ÌúÊͷŲ»³©£¬Ï¸°ûÄÚÌúˮƽ½Ï¸ßµÄС³¦ÉÏƤϸ°û½«¼õÉÙ´ÓʳÎïÖÐÉãÈëÌú¡£

ÌúתÔ˵°°×£¨ferroportin£¬ËõдΪFPN£¬ÓÖ³ÆĤÌúתÔ˵°°×£©ÊÇÒÑÖªµÄΨһһÖÖϸ°ûÌúÊä³öµ°°×£¬Ëü½áºÏϸ°ûÄڵĶþ¼ÛÌúÀë×Ó£¨Fe2+£©£¬²¢½«ÆäÊͷŵ½Ï¸°ûÍâ¡£ÌúתÔ˵°°×£¨ferroportin£¬FPN£©·þÎñÓÚϸ°ûµÄÌúÊä³ö£¬ÉÏһƪÎÄÕ½éÉܵÄתÌúµ°°×£¨Transferrin£¬Tf£©ºÍתÌúµ°°×ÊÜÌ壨transferrin receptor£¬TfR£©Ôò·þÎñÓÚϸ°ûµÄÌúÉãÈ롣תÌúµ°°×£¨Tf£©¸ºÔðÏò¸÷Æ÷¹Ù¡¢×éÖ¯ÖеÄϸ°ûÔËËÍÑ­»·Ìú£¬Ï¸°ûĤÉϵÄתÌúµ°°×ÊÜÌ壨TfR£©¸ºÔð½áºÏ¡¢½ÓÊÕתÌúµ°°×£¬½«×ªÌúµ°°×¼°ÆäЯ´øµÄÌúÉãÈëϸ°ûÄÚ¡£ÌúתÔ˵°°×£¨FPN£©½áºÏ¡¢Êä³öµÄÊǶþ¼ÛÌúÀë×Ó£¨Fe2+£©£¬×ªÌúµ°°×£¨Tf£©½áºÏ¡¢ÔËË͵ÄÊÇÈý¼ÛÌúÀë×Ó£¨Fe3+£©£¬ÌúתÔ˵°°×£¨FPN£©Êä³öµÄFe2+ÔÚ±»×ªÌúµ°°×£¨Tf£©½áºÏ¡¢ÔËËÍÇ°½«±»Ñõ»¯ÎªFe3+¡£Ð¡³¦£¨Ö÷ÒªÊÇÊ®¶þÖ¸³¦£©´ÓʳÎïÖÐÎüÊÕµÄÒ²ÊÇFe3+£¬ËüÒª±»»¹Ô­ÎªFe2+£¬¶øºóÓÉÌúתÔ˵°°×£¨FPN£©½áºÏ¡¢Êͷŵ½Ï¸°ûÍâ¡£

×ÜÖ®£¬Ìúµ÷Ëصģ¨·Ö×Ó¡¢ÉúÀí£©×÷ÓÃÊǽáºÏ¡¢ÄÚ»¯¡¢½µ½âΨһµÄϸ°ûÌúÊä³öµ°°×¡ªÌúתÔ˵°°×£¨FPN£©£¬ÒÖÖÆÌúÊÍ·Å¡¢ÌúÎüÊÕ£¬¼õÉÙ½øÈëѪҺÏò»úÌå¸÷×éÖ¯ÊäË͵ÄÑ­»·Ìú¡£ÔÚijЩÌض¨Ìõ¼þÏ£¬ÈçѪÇåÌú¹ýÔØ»ò¸ÎÔàÌú¹ýÔØʱ£¬¸ÎÔཫÉú³É¡¢·ÖÃÚ¸ü¶àÌúµ÷ËØ£¬·´Ö®£¬¸ÎÔཫ¼õÉÙÌúµ÷ËصÄÉú³É¡¢·ÖÃÚ¡£

Ìú¶ÔËùÓлîϸ°û¶¼ÊDZز»¿ÉÉٵġ£ÈκζÔÌúµ÷ËØ¡¢¶ÔÕý³£Ìú´úлµÄÍâÔÚ¸ÉÔ¤¡¢¸ÉÈŶ¼¿ÉÄÜÔì³ÉÌú´úлʧµ÷¡¢ÎÉÂÒ£¬ÆÆ»µ»úÌåÌúÎÈ̬¡¢Ìúƽºâ£¬Òý·¢Ò»ÏµÁв¢·¢Ö¢£¬°üÀ¨Ï¸°ûÌúËÀÍö£¨ferroptosis£©¡¢¶àÆ÷¹ÙË¥½ßºÍ»¼ÕßËÀÍö¡£

Ìúµ÷ËØÒ²ÊÇÒ»ÖÖ¸»º¬°ëë×°±ËáºÍ¶þÁò¼ü£¨º¬ÓÐ8¸ö°ëë×°±Ëá²Ð»ùºÍ4¸ö¶þÁò¼ü£©µÄ¿¹¾ú¶àëÄ¡£ÔÚÌúµ÷ËØËùÊôµÄ¦Â-·¢¼ÐëļÒ×åÖУ¬Ìúµ÷ËصĶþÁò¼üÊýÁ¿×î¶à£¨4¸ö£©£¬ÊǸüÒ×åDZÔÚ×îÓÐЧµÄ¿¹¾úëÄ¡£Ìúµ÷ËؾßÓй㷺µÄ¿¹¾ú¡¢¿¹Ô­Éú¶¯Îï×÷Ó㬲ÎÓë»úÌåÃâÒߺÍÌìÈ»·ÀÓù£¬ËðÉË¡¢¸ÐȾºÍÑ×Ö¢´Ì¼¤¿ÉÇ¿ÁÒÒýÆðÌúµ÷ËØ»ùÒò±í´ïµÄÔö¼Ó¡£Ìúµ÷ËØÒ²±»³ÆΪ¸ÎÔà±í´ïµÄ¿¹¾úëÄ£¨liver-expressed antimicrobial peptide£¬LEAP-1£©¡£

Ìúµ÷ËØ£¨Hepcidin£¬Hepc£©ÊǶàëÄÀ༤ËØ£¬²»ÊÇÑϸñÒâÒåÉϵĵ°°×ÖÊ£¬²»ÊÇϸ°ûĤ¿çĤÊÜÌåµ°°×£¬×ÔȻҲ²»ÊÇSARS-CoV-2µÄ¸ÐȾÊÜÌå/ÊÜÌåµ°°×£¬µ«ËüÊÇSARS-CoV-2 Sµ°°×µÄ¿É½áºÏÈËÌåÒò×Ó¡£

SARS-CoV-2 S£¨Spike£©µ°°×Óб乹ÌØÐÔ£¬ÄÜÒÔ¶à¸öÇøÓò£¨AMR¡¢ACE2 binding-site region¡¢RBM£©½áºÏÌúµ÷ËØ£¬²¢ÔÚ²»Í¬¹¹Ïó»ò²»Í¬×´Ì¬ÏÂÓÅÏÈÒÔ²»Í¬ÇøÓòÓëÌúµ÷ËؽáºÏ£»SARS-CoV-2 Spike¡¢Hepc¡¢ACE2¿É½áºÏÐγÉÈýÔª¸´ºÏÌ壻SARS-CoV-2 SpikeÓëHepcµÄ×÷ÓᢽáºÏÓ°ÏìSpikeÓëACE2µÄ×÷ÓᢽáºÏ£¬ÕâÒ»Ó°Ïì¾ßÓÐÁ½ÃæÐÔ£ºÒ»·½Ã棬SARS-CoV-2 Spike-HepcµÄ×÷ÓᢽáºÏÊʶÈÔö¼ÓÁËSpike-ACE2µÄ½áºÏÇ׺ÍÁ¦£»ÁíÒ»·½Ã棬Spike-HepcµÄ×÷ÓᢽáºÏ½«´ÙʹSpike´ÓÓÐÀûÓÚ½áºÏACE2µÄ¿ª·Å¹¹Ïó£¨open conformation£©×ª±äΪ²»ÀûÓÚ½áºÏACE2µÄ±ÕºÏ¹¹Ïó£¨closed conformation£©£¬ÓëHepc½áºÏµÄSpike½«ÔÚ¸ü¶àʱ¼äÄÚ´¦ÓڱպϹ¹Ïó״̬¡£

SARS-CoV-2¿ÉÄÜÊÇÒÑÂÛÎı¨¸æµÄ£¬Î¨Ò»Ò»ÖֿɽáºÏÌúµ÷ËصIJ¡¶¾£¨°üÀ¨¹Ú×´²¡¶¾¡¢·Ç¹Ú×´²¡¶¾£©¡£

SARS-CoV-2 Sµ°°×²»½öÄܹ»½áºÏÈËÀàÌúµ÷ËØ£¬¶øÇÒ£¬Æäβ²¿ÇøÓòÓëÈËÀàÌúµ÷ËØ´æÔÚ°±»ùËáÐòÁÐÏàËÆÐÔ£¬Õâһβ²¿ÇøÓò¿ÉÄÜÄܹ»Ä£·ÂÌúµ÷ËصķÖ×Ó×÷ÓúÍÉúÀí¹¦ÄÜ£¬¼ÆËã»úÄ£ÄâÑо¿±íÃ÷£¬SARS-CoV-2 Sµ°°×µÄβ²¿Æ¬¶Ï--Covidin¶àëÄÄܹ»½áºÏÌúתÔ˵°°×£¨ferroportin£¬FPN£©£¬Covidin¶àëÄ»¹¿ÉÄÜÄܹ»½ø¶ø½µ½âÌúתÔ˵°°×¡£´óÁ¿¡°Covidin¡±¶àëĵĴæÔÚ½«¹ý¶ÈÒÖÖÆÌúÊÍ·Å¡¢ÌúÎüÊÕ£¬µ¼ÖÂѪҺÖеÄÑ­»·ÌúˮƽµÍÏ£¬»úÌå¸÷×éÖ¯Ìú¹©Ó¦Æ¶·¦£¬²¢Òý·¢Ò»ÏµÁÐÌú´úлÎÉÂÒ²¢·¢Ö¢¡£

Ìúµ÷ËØÔÚSARS-CoV-2²¡ÀíÖз¢»ÓÖØÒª×÷Ó㬿ÉÄÜÊÇCOVID-19·¢²¡»úÖƵĺËÐIJÎÓëÕß¡£

ÂÛÎÄÒÀ¾ÝÒ»

Biophysical Insight into the SARS-CoV2 Spike¨CACE2 Interaction and Its Modulation by Hepcidin through a Multifaceted Computational Approach
ͨ¹ý¶à·½ÃæµÄ¼ÆËã·½·¨£¬¶ÔSARS-CoV-2 Spike-ACE2Ï໥×÷Óã¬ÒÔ¼°ÕâÒ»×÷ÓõÄÌúµ÷Ëص÷½Ú½øÐÐÉúÎïÎïÀí¶´²ì
https://pubs.acs.org/doi/10.1021/acsomega.2c00154

Publication Date:May 10, 2022

ÂÛÎÄÖ÷ÒªÑо¿ÁËÁ½·½ÃæµÄÄÚÈÝ£º1¡¢ÔÚ֮ǰһƪÂÛÎĵĻù´¡ÉϽøÒ»²½Ñо¿ÁËSARS-CoV-2 Spikeµ°°×µÄ±ä¹¹µ÷½ÚÇøÓò£¨Allosteric Modulation Region£¬AMR£©£»2¡¢SARS-CoV-2 SpikeÓëÌúµ÷ËØ£¨Hepcidin£©µÄÏ໥×÷Ó㬼°Spike-HepcidinÏ໥×÷ÓöÔSpike-ACE2Ï໥×÷ÓᢶÔSpike¹¹ÏóµÄÓ°ÏìºÍµ÷½Ú¡£

ÂÛÎÄʹÓÃÁË´óÁ¿Ëã·¨¡¢¹«Ê½¡¢Ä£ÐÍ£¬Ó¦ÓÃÁ˶àÖÖ·ÖÎöÈí¼þ¡¢¹¤¾ß£¬Æª·ùºÜ³¤£¬ÔĶÁÀí½âµÄÄѶȽϴ󡣱ÊÕߺöÂÔÁËÂÛÎĽ¨Ä£¡¢¼ÆËã¡¢·ÖÎöµÄ¼èÉîϸ½Ú£¬ÕªÂ¼¡¢ÊáÀí³öÁ˹ØÓÚHepcidinµÄÈçÏÂÂÛÎÄÒªµã£º

1¡¢»ùÓÚµ°°×Öʹ¹Ïó±ä»¯ºÍÊÜÌå¡¢ÅäÌå½áºÏµÄ²»Í¬¼ÙÉ裬ӦÓöàÖÖÄ£ÐͺͼÆËã·½·¨½øÐзÖÎö£¬½á¹ûÒ»Ö±íÃ÷HepcidinÓëSARS-CoV-2µÄSpikeµ°°×Ö®¼ä´æÔÚDZÔÚÓÐЧµÄÏ໥×÷Ó㻲¢ÇÒ£¬SARS-CoV-2 SpikeÓëHepcidinµÄÏ໥×÷ÓÃÓ°ÏìSpikeµÄ¹¹Ïó¼°SpikeÓëACE2µÄÏ໥×÷Óá£

acsomega.2c00154_images-large-ao2c00154_0001_75p.PNG


ͼA£ºSARS-CoV-2 SpikeÈý¾ÛÌåÓëhuman ACE2£¨ÓÒÉÏ»ÆÉ«²¿·Ö£©µÄ¸´ºÏÎïÄ£ÐÍ£»
ͼB£º¶Ô½Ó£¨½áºÏ£©ÁËhepcidin£¨ÖмäÉîÀ¶É«²¿·Ö£©µÄSARS-CoV-2 SpikeÈý¾ÛÌåÓëhuman ACE2µÄ¸´ºÏÎïÄ£ÐÍ¡£

2¡¢SARS-CoV-2 Spike½áºÏHepcidinµÄÇøÓò£¬ÓëSpikeµÄ±ä¹¹µ÷½ÚÇøÓò£¨AMR£©²¿·ÖÖصþ¡£

¶Ô±ä¹¹×÷һЩ˵Ã÷¡£

±ä¹¹¼´¹¹Ïó¸Ä±ä¡£µ°°×ÖÊ»ò·Ö×ӵı乹£¬Ö¸Ä³Ð©µ°°×ÖÊ/·Ö×ÓÓëÆäËüÎïÖʽáºÏºó£¬¹¹Ïó·¢Éú¸Ä±ä£¬Æä½áºÏÌØÐÔ¡¢ÉúÎï»îÐÔÒ²ËæÖ®¸Ä±äµÄÏÖÏó¡£Ê¹µ°°×ÖÊ/·Ö×Ó¹¹Ïó·¢Éú¸Ä±äµÄ½áºÏÎïÖʳÆΪÅäÌå»òÅä»ù£¬ÓëÅäÌå×÷ÓᢽáºÏµÄµ°°×ÖÊ/·Ö×ÓµÄÌض¨²¿Î»³ÆΪµ°°×ÖÊ/·Ö×ӵı乹²¿Î»»ò±ä¹¹ÇøÓò¡£

Óб乹ÌØÐԵĵ°°×³ÆΪ¿É±ä¹¹µ°°×£¬×î¾­µäµÄ¿É±ä¹¹µ°°×ÊǺìѪÇò£¨ºìϸ°û£©ÖеÄѪºìµ°°×£¨hemoglobin£¬Hb£©¡£Ñªºìµ°°×º¬ÓÐËĸöÑÇ»ù£¨Á½Ìõ¦ÁÁ´£¬Á½Ìõ¦ÂÁ´£©£¬Ã¿¸öÑÇ»ùÓÉÒ»ÌõëÄÁ´ºÍÒ»¸öѪºìËØ·Ö×Ó¹¹³É£¬Ã¿¸öѪºìËØÓÖÓÉ4¸ößÁ¿©»·×é³É£¬Ã¿¸ößÁ¿©»·ÖÐÑëÓÐÒ»¸öÌúÔ­×Ó¡£ÈçÏÂͼËùʾ¡£

d7c7dfc69f9046fe926df1eadf1a1e38.png

Ѫºìµ°°×½á¹¹Ê¾Òâͼ

×¢¡£ÉÏͼ¼°²¿·ÖѪºìµ°°×±ä¹¹µÄ˵Ã÷Õª×Ô£º
ʲôÊǵ°°×Öʵıð¹¹Ð§Ó¦
https://www.sohu.com/a/101931503_374087

ÖÚËùÖÜÖª£¬Ñªºìµ°°×µÄºËÐŦÄÜÊÇÔËËÍÑõÆø£¨O2£©¡£Ñªºìµ°°×½áºÏ¡¢ÊÍ·ÅÑõµÄ¹ý³Ì¶¼Éæ¼°±ä¹¹¡£Î´ÓëÑõ½áºÏÇ°£¬Ñªºìµ°°×ËĸöÑÇ»ù¼ä½áºÏ½ôÃÜ£¬²»Ò×ÓëÍⲿµÄÑõ·Ö×Ó£¨O2£©½áºÏ¡£Ñõ·Ö×Ó²»ÄÜÒ»²½µ½Î»Ö±½Ó½áºÏµ½Ñªºìµ°°×»òѪºìËØ£¬ËüÐèÒªÏÈÓëѪºìËØßÁ¿©»·ÖÐÑëµÄÌúÔ­×Ó½áºÏ£¬ÓëÌúÔ­×ӵĽáºÏ½«ÏÈʹÑõ·Ö×ӱ乹£¬¹¹Ïó¸Ä±äºóµÄÑõ·Ö×ÓÇ¡ºÃÄܹ»½øÈë¡¢¶Ô½Óµ½ÑªºìËصÄßÁ¿©»·ÖУ¬´ï³ÉÑõ·Ö×ÓÓëѪºìµ°°×ijһÑÇ»ùµÄ½áºÏ¡£Ñõ·Ö×ÓÓëij¸öÑÇ»ù½áºÏºó£¬Ñªºìµ°°×½«·¢Éú±ä¹¹£¬¸÷ÑÇ»ù¼äµÄÏ໥×÷ÓüõÈõ£¬Î´½áºÏÑõµÄÑÇ»ù¹¹Ïó±äµÃ¸üÒ×ÓÚ½áºÏÑõ·Ö×Ó¡£ÏÂÒ»¸öÑÇ»ùÓëÑõ·Ö×Ó½áºÏºó£¬Ñªºìµ°°×½«¼ÌÐø±ä¹¹£¬½øÒ»²½À©´óÒ×ÓëÑõ½áºÏµÄÇ÷ÊÆ¡£Ñªºìµ°°××îºóÒ»¸ö£¨µÚ4¸ö£©½áºÏÑõµÄÑÇ»ùµÄO2½áºÏÇ׺ÍÁ¦ÊǵÚ1¸ö½áºÏÑõÑÇ»ùO2½áºÏÇ׺ÍÁ¦µÄÊý°Ù±¶¡£±ä¹¹Ò²Í¬Ñù·¢ÉúÔÚÑõ·Ö×ÓµÄÊͷŹý³ÌÖУ¬Ã¿´ÎÑõµÄÊͷŶ¼´ÙʹѪºìµ°°×±ä¹¹£¬Ê¹ËüµÄº¬ÑõÑÇ»ù¸üÒ×ÓÚÊÍ·ÅÑõ·Ö×Ó¡£

Ѫºìµ°°×µÄ±ä¹¹ÇøÓò»ò±ä¹¹²¿Î»¾ÍÊÇѪºìËØÉϽáºÏÑõ·Ö×ÓµÄßÁ¿©»·¡£ÉԺ󽫿´µ½£¬SARS-CoV-2 SpikeµÄ±ä¹¹µ÷½ÚÇøÓò£¨Allosteric Modulation Region£¬AMR£©¿Éͨ¹ý½áºÏÌúµ÷ËØʹSARS-CoV-2 Spike±ä¹¹¡£

SARS-CoV-2 SpikeÒ²Äܹ»²»½èÖúÅäÌå×ÔÐб乹¡£µÂ¹ú¿Æѧ¼Ò2020Äê10Ôµġ¶Science¡·ÂÛÎÄÖ¸³ö£¬SARS-CoV-2 SpikeÖдæÔÚÈý¸öÈáÐÔ½ÂÁ´£¬Õâ×é½ÂÁ´µÄÔ˶¯»úÖÆÓëÈËÌå÷Å¡¢Ï¥¡¢õ×Èý¸ö¹Ø½ÚÀàËÆ£¬ËüÃǸ³ÓèSARS-CoV-2 SpikeºÜ¸ßµÄÔ˶¯×ÔÓɶȣ¬SpikeÄܹ»Í¨¹ýÈý¹Ø½Úʽ½ÂÁ´½á¹¹Áé»îµ÷½Ú×Ë̬ºÍ¹¹Ï󣬸ßЧ½áºÏACE2£¬ÓÐЧÌӱܿ¹Ìå½áºÏ£¬ÌÓ±ÜÃâÒßϵͳµÄËÑË÷¡¢¹¥»÷¡£SARS-CoV-2ÓµÓжàÖØÃâÒßÌӱܡ¢ÃâÒßÆÁ±Î»úÖÆ£¬±ÈÈ磬Ëü»¹¿Éͨ¹ý¡°RRAR¡±furinøÇÐλµã¸½½üµÄO-Linked¾ÛÌǽṹ»ñµÃÁíÒ»ÖØÃâÒßÆÁ±Î¡¢ÃâÒßÌÓ±ÜÄÜÁ¦¡£¹ØÓڵ¹ú¿Æѧ¼Ò¡¶Science¡·ÂÛÎĵĸüÏêϸ½éÉÜ£¬¿É²ÎÔıÊÕß֮ǰµÄÎÄÕ£º

³ö×Ô¿Æѧ·è×ÓÖ®ÊֵIJ¡¶¾¼¯´ó³ÉÕߣ¨¶þ£©

3¡¢SWARM¶Ô½Ó·ÖÎö±íÃ÷£¬hepcidin25¿ÉÓëSARS-CoV-2 SpikeÈý¾ÛÌ忪·Å¹¹Ïóϵı乹µ÷½ÚÇøÓò£¨AMR£©¼°AMRÖܱßÇøÓò½áºÏ£¬½áºÏÄÜ£¨binding energy£©Ô¼Îª−22¡¢−24 kcal/mol £»SWARMäÁé»î¶Ô½Ó£¨SWARM blind and flexible docking£©±íÃ÷£¬HepcidinÓÅÏÈÓëAMR½áºÏ¡£

hepcidin25Ò²ÄÜÒÔ¸ßÇ׺ÍÁ¦½áºÏSARS-CoV-2 SpikeÈý¾ÛÌ壨trimeric£©»òµ¥Ì壨monomeric£©µÄACE2½áºÏλµãÇøÓò£¨ACE2 binding-site region£©£¬Õâ±íÃ÷hepcidin25¡¢ACE2¿ÉÄܶÔSARS-CoV-2 Spike´æÔÚ½áºÏ¾ºÕù¡£ÏÂͼչʾÁËSWARM¶Ô½ÓµÄ½á¹û¡£

acsomega.2c00154_images-large-ao2c00154_0010_70p.PNG

hepcidin25¿ÉÓëSARS-2 SpikeµÄAMR¡¢AMRÁÚ½üÇøÓò¡¢ACE2½áºÏÇøÓò½áºÏ

ͼÖÐÀ¶É«²¿·Ö¶ÔÓ¦SARS-CoV-2 SpikeÈý¾ÛÌ壨ABC£©µÄCÁ´£¨chain C£¬¼´µ¥ÌåC£¬monomeric C£©£¬»ÒÉ«²¿·Ö¶ÔÓ¦Èý¾ÛÌåµÄÁíÍâÁ½¸öÁ´/µ¥Ì壨A¡¢B£©£»
ͼÖнÏСµÄºÚÉ«Ë¿Ìõ×´Îï´ú±í½áºÏÖÁSpike²»Í¬ÇøÓòµÄhepcidin25£»
×óͼ¡¢ÓÒͼ¿ÉÄÜ·Ö±ð¶ÔÓ¦SpikeÈý¾ÛÌåµÄ¿ª·Å¹¹Ï󡢱պϹ¹Ïó¡£

SARS-CoV-2µÄSpikeµ°°×ΪͬԴÈý¾ÛÌ壬Èý¾ÛÌåÖеÄÈý¸öµ¥Ìå½á¹¹Ïàͬ£¬Ã¿¸öµ¥Ì嶼ÓÉS1ÑÇ»ù£¨ÊÜÌå½áºÏÑÇ»ù£©¡¢S2ÑÇ»ù£¨Ä¤ÈÚºÏÑÇ»ù£©¹¹³É¡£

¹ØÓÚSWARM¶Ô½Ó£¨SWARM docking£©£¬ÂÛÎÄÒÔWeb server SWARMΪ¹¤¾ß·ÖÎö¡¢Ñо¿µ°°×ÖÊ£¨°üÀ¨¶àëÄ£©¼äµÄÏ໥×÷ÓÃÇé¿ö¡£Web server SWARM»ùÓÚSwarmDockËã·¨£¬Ö§³Ö¶Ôµ°°×ÖÊ/¶àëļäµÄÏ໥×÷ÓýøÐÐÁé»îµÄ¶Ô½Ó½¨Ä££¬È·¶¨»òÅųý¿É½áºÏÐÔ£¬Ä£Äâ¡¢¼ÆËã¡¢³ÊÏÖ½áºÏϸ½Ú£¨Èç¶Ô½Ó×Ë̬¡¢½áºÏ²¿Î»¡¢½áºÏÇ׺ÍÁ¦µÈµÈ£©£¬²¢¶Ô¿É½áºÏµÄµ°°×/¶àëÄÉú³É¡¢Êä³ö¸´ºÏÎïµÄ3D½á¹¹Í¼¡£

4¡¢¶àÖÖËã·¨µÄ¼ÆËã¡¢·ÖÎö½á¹û±íÃ÷£¬SpikeÓëHepcidinµÄ½áºÏÔöÇ¿ÁËSpikeÓëACE2µÄ½áºÏÇ׺ÍÁ¦ºÍÏ໥×÷ÓÃÇ¿¶È£¬ÔöÇ¿ÁËACE2-spike¸´ºÏÎïµÄÎȶ¨ÐÔ£»

µ±hepcidin25δÓëAMR½áºÏʱ£¬SpikeÈý¾ÛÌåÓëACE2µÄÔ¤²â½áºÏÄÜΪ-47kcal/mol£¬µ±hepcidin25ÓëAMR½áºÏʱ£¬SpikeÈý¾ÛÌåÓëACE2µÄÔ¤²â½áºÏÄÜÔöÖÁ-52kcal/mol¡£

5¡¢ËäÈ»ÎÒÃÇÔ¤²âhepcidin25ÓëAMRÔÚ¿ª·Å¹¹ÏóϵĽáºÏÒ»¶¨³Ì¶ÈÉÏÌáÉýÁËSpikeÓëACE2µÄ½áºÏÇ׺ÍÁ¦£¬µ«ÎÒÃÇ»¹¹Û²ìµ½£¬hepcidin25ÓëAMRµÄ½áºÏ½«Ê¹Spike´ÓRBDÏòÉÏ£¨Í¦Á¢£©µÄÓÐÀûÓÚ½áºÏACE2µÄ¿ª·Å¹¹Ïó£¨open conformation£©/¿ª·Å״̬£¨open state£©×ª»»Îª£¨RBDµ¹·üµÄ£©²»ÀûÓÚ½áºÏACE2µÄ±ÕºÏ¹¹Ïó£¨closed conformation£©/±ÕºÏ״̬£¨closed state£©£¬Óëhepcidin25½áºÏµÄSpike½«ÔÚ¸ü¶àʱ¼äÄÚ´¦ÓڱպϹ¹Ïó/±ÕºÏ״̬¡£

acsomega.2c00154_images-large-ao2c00154_0012_80p.PNG

hepcidin25¶ÔSARS-CoV-2 Spike¶¯Á¦Ñ§£¨dynamics£©µÄÓ°Ïì

ͼA£ºSARS-CoV-2 SpikeÈý¾ÛÌåCÁ´ÉϵÄhepcidin25¶Ô½Ó½áºÏλµã£¨Docked binding sites£©£»
ͼB£ºSARS-CoV-2 SpikeÈý¾ÛÌåCÁ´ÔÚËÄÖÖÇé¿öϵÄÑö½Ç£¨×Ë̬£©Ê±³¤¹Øϵ£»
ͼC£ºSARS-CoV-2 SpikeÈý¾ÛÌåÕûÌåÔÚÁ½ÖÖÇé¿öϵÄÑö½Ç£¨×Ë̬£©Ê±³¤¹Øϵ¡£

SpikeÈý¾ÛÌå»òÆäij¸öµ¥Ìå/Á´µÄ½Ç¶È/Ñö½Ç·´Ó³ÆäÖ±Á¢¡¢ÌÉ·ü¡¢²àÇãµÈ×Ë̬£¬Ñö½Ç×î´óµÄÖ±Á¢×Ë̬¶ÔÓ¦³ä·Ö¿ª·ÅµÄ¹¹Ïó£¬Ñö½Ç×îСµÄÌÉ·ü×Ë̬¶ÔÓ¦¸ß¶È±ÕºÏµÄ¹¹Ïó£¬Ñö½Ç½Ï´óµÄ¿ª·Å¹¹ÏóÓÐÀûÓÚ½áºÏACE2¡£

SpikeµÄ¹¹Ïó¡¢×Ë̬¡¢Ñö½ÇÊǶ¯Ì¬±ä»¯µÄ£¬Spike¿ÉÄÜÖ»ÔÚijЩʱ¼ä¶ÎÄÚ´¦ÓÚijһ¹¹Ïó/×Ë̬/Ñö½Ç¡£Í¼B¡¢Í¼C·´Ó³ÁËSpikeÈý¾ÛÌå»òÆäµ¥Ìå/Á´ÔÚ²»Í¬Çé¿öÏ´¦ÓÚ²»Í¬Ñö½ÇµÄÏà¶Ôʱ³¤¡£

Ñо¿ÕßÔÚSARS-CoV-2 SpikeÉÏÑ¡È¡ÁËÈý¸ö²ÎÕÕ°±»ùËá²Ð»ù£¬ÒÔËüÃǵĿռäλÖÃÀ´²â¶¨SpikeÈý¾ÛÌåÕûÌå»òij¸öµ¥Ìå/Á´µÄ½Ç¶È/Ñö½Ç£¬ÈçͼC×óÉÏÇøÓòËùʾ¡£Èý¸ö²ÎÕղлù·Ö±ðλÓÚSpikeµÄACE2½áºÏλµãÇøÓò¡¢AMR¸½½ü¡¢¾¥Çø£¨stalk of spike£¬Ó¦¸ÃÖ¸spikeµÄ¿çĤÇøÓò£¬Ä¤Ö¸²¡¶¾°üĤ£©£¬ËüÃÇÔÚSpikeµ°°×°±»ùËáÐòÁÐÖеÄÐòºÅ·Ö±ðΪ494¡¢538¡¢1042¡£SARS-CoV-2 Spikeµ°°×°±»ùËáÐòÁеij¤¶ÈΪ1273»ò1269¡£

ͼBµÄËÄÌõÇúÏß·´Ó³Spike CÁ´ÔÚËÄÖÖÇé¿öÏ´¦ÓÚ²»Í¬Ñö½Ç×Ë̬µÄÏà¶Ôʱ³¤¡£
C£ºÎ´½áºÏhepcidin25¡¢ACE2µÄSpike CÁ´£»
CH£ºAMRÓëhepcidin25½áºÏµÄSpike CÁ´£»
CD£ºÓëACE2½áºÏµÄSpike CÁ´£»
CDH£ºAMRÓëhepcidin25½áºÏ£¬Í¬Ê±½áºÏACE2µÄSpike CÁ´¡£

ͼCµÄÁ½ÌõÇúÏß·´Ó³SpikeÈý¾ÛÌåÕûÌåÔÚÁ½ÖÖÇé¿öÏ´¦ÓÚ²»Í¬Ñö½Ç״̬µÄÏà¶Ôʱ³¤¡£
ABCD£º½ö½áºÏACE2µÄSpikeÈý¾ÛÌ壻
ABCD_HPC£ºAMRÓëhepcidin25½áºÏ£¬Í¬Ê±½áºÏACE2µÄSpikeÈý¾ÛÌå¡£

ͼB¡¢Í¼CµÄºá×ø±êΪÏà¶ÔÑö½Ç£¬¼´Ñö½ÇÓë×îСÑö½ÇµÄ²îÖµ£¨deviation from min angle£©£¬×Ý×ø±êÓ¦¸ÃÊÇ´¦ÓÚijһÑö½ÇµÄÏà¶Ôʱ³¤£¨±ÊÕßûÓп´µ½¶Ô×Ý×ø±êµÄ˵Ã÷£©¡£

ͼÖеÄ×îСÑö½Ç£¨minimum angle£©´óÖÂΪ180¶È£¬×î´óÑö½Ç£¨maximum angle£©´óÖÂΪ90¶È£¨ÒÔÖ±Á¢Îª´ó£¬ÒÔ²àÇã¡¢ÌÉ·üΪС£©£¬Ïà¶ÔÑö½ÇΪ¸ºÖµ£¬×î´óÑö½ÇÓë×îСÑö½ÇµÄ²îÖµ»òÆ«ÀëÖµ´óÖÂΪ-90¶È¡£

ÓÉͼB¿É¼û£¬Ïà±Èδ½áºÏhepcidin25¡¢ACE2µÄSpike CÁ´£¨¶ÔÓ¦ºÚÉ«ÇúÏߣ©£¬AMRÓëhepcidin25½áºÏµÄSpike CÁ´£¨¶ÔÓ¦»ÒÉ«ÇúÏߣ©´¦ÓڽϴóÑö½Ç×Ë̬£¨¿ª·Å¹¹Ï󣩵Äʱ¼ä±ä¶Ì£¬´¦ÓÚ½ÏСÑö½Ç×Ë̬£¨±ÕºÏ¹¹Ï󣩵Äʱ¼ä±ä³¤£»

ÓÉͼC¿É¼û£¬Ïà±È½öÓëACE2½áºÏµÄSpike£¨¶ÔÓ¦À¶É«ÇúÏߣ©£¬Í¬Ê±Óëhepcidin25ºÍACE2½áºÏµÄSpike£¨¶ÔÓ¦ºìÉ«ÇúÏߣ©´¦ÓڽϴóÑö½Ç×Ë̬£¨¿ª·Å¹¹Ï󣩵Äʱ¼ä±ä¶Ì£¬´¦ÓÚ½ÏСÑö½Ç×Ë̬£¨±ÕºÏ¹¹Ï󣩵Äʱ¼ä±ä³¤¡£

6¡¢³ýAMR£¨¼°¸½½üÇøÓò£©¡¢ACE2½áºÏλµãÇøÓòÍ⣬hepcidin25»¹ÄÜÓëSARS-CoV-2 SpikeµÄRBM£¨receptor binding motif£¬ÊÜÌå½áºÏ»ùÐò£¬RBDµÄÒ»²¿·Ö£©½áºÏ£»

µ±SpikeÈý¾ÛÌå´¦ÓÚ¿ª·Å¹¹Ïóʱ£¬hepcidin25ÓÅÏÈÓëRBM½áºÏ£¬ÓëAMR½áºÏµÄ»ú»á½ÏµÍ£»µ±Spike´¦ÓڱպϹ¹Ïóʱ£¬hepcidin25ÇãÏòÓÚ£¨ÓÅÏÈ£©ÓëAMR½áºÏ£»hepcidin25ÓëAMR½áºÏºóÇãÏòÓÚ½«SpikeÓÉ¿ª·Å¹¹Ïóת»»Îª±ÕºÏ¹¹Ï󣬻òʹÆäά³ÖÔڱպϹ¹Ïó״̬£»

µ±SpikeÈý¾ÛÌå½Ó½ü¿ª·Å¹¹Ïóʱ£¬AMRÖÜΧ³ÊÏÖ³öÒ»¸öhepcidin25½áºÏλµã£¬hepcidin25½«½áºÏµ½AMR µÄÍâ±Ú£¬¶ø·Ç´©Í¸AMR£¬½áºÏµ½AMRÇ»ÖУ¨The rectified spike chain in the trimeric form of spike protein presents a binding site around the AMR for hepcidin25 when it is near to the open conformation...but hepcidin25 is not successful for penetrating into the AMR; instead of binding into the AMR cavity it binds to the external wall of the AMR.£©£»

µ±SpikeÈý¾ÛÌåת±äΪ¿ª·Å¹¹Ïóʱ£¬hepcidin25ÓëAMRµÄ½áºÏÇ׺ÍÁ¦½µµÍ£¬´ËʱRBM³ÉΪhepcidin25µÄ¸ü¼Ñ½áºÏλµã£¨It is indicated in Figure 13B that the RBM is becoming a better binding site for hepcidin25 upon transition of trimeric spike to the open state...It is indicated in Figure 13C that the affinity of hepcidin25 is decreased for AMR upon transition of spike to the open state.£©£»

SpikeÈý¾ÛÌåÓɱպÏ״̬ת»»Îª¿ª·Å״̬ºó£¬AMRÓëSpikeÆäËüÇøÓòµÄ½Ó´¥¼õÉÙ£¬ÄÚ²¿²Ð»ùÏ໥½Ó´¥Ôö¼Ó£¬AMR±äµÃ¸ü½ôÃÜ£¬ÕâÖÖ½ôÃܵĽṹ²»ÀûÓÚ½áºÏhepcidin£¬Ê¹hepcidin25ÓëAMRµÄ½áºÏ»ú»á¼°½áºÏÇ׺ÍÁ¦½µµÍ£»

acsomega.2c00154_images-large-ao2c00154_0014_75p.PNG

µ±SpikeÓɱպϹ¹Ïóת»»Îª¿ª·Å¹¹Ïóʱ£¬AMRÓëÍⲿµÄ×÷ÓüõÉÙ£¬×ÔÉíÄÚ²¿×÷ÓÃÔö¼Ó¡£

ÔÚSpikeÓɱպϹ¹Ïóת±äΪ¿ª·Å¹¹Ïó¹ý³ÌÖУ¬RBMÏàÓ¦µØ·¢Éú½á¹¹±ä»¯£¬RBM¶Ôhepcidin25µÄSWARMÔ¤²âµÄ½áºÏÇ׺ÍÁ¦£¨SWARM-predicted affinity£©Ò²²»¶Ï±ä»¯¡£

ÂÛÎÄÒÀ¾Ý¶þ

COVID-19 and iron dysregulation: distant sequence similarity between hepcidin and the novel coronavirus spike glycoprotein
COVID-19ºÍÌúʧµ÷£ºÌúµ÷ËغÍÐÂÐ͹Ú×´²¡¶¾´ÌÍ»Ìǵ°°×Ö®¼äµÄÔ¶¾àÀëÐòÁÐÏàËÆÐÔ
https://biologydirect.biomedcentral.com/articles/10.1186/s13062-020-00275-2

Published: 16 October 2020

ÂÛÎÄËù˵µÄÒ£Ô¶£¨distant£©£¬¿ÉÄÜÖ¸ÐÂÐ͹Ú×´²¡¶¾Spikeµ°°×£¬ÓëÈËÀàºÍijЩ¼¹×µ¶¯ÎïÌúµ÷ËضàëÄÔÚ·ÖÀà¹Øϵ¡¢ÎïÖÖ½ø»¯¹ØϵÉϵÄÒ£Ô¶¾àÀë¡£

ÂÛÎÄÖ¸³ö£º

1¡¢Ä³Ð©¹Ú×´²¡¶¾Spikeµ°°×µÄβ²¿ÇøÓò£¨C-terminal region£¬C¶ËÇøÓò£©£¬ÓëijЩ¼¹×µ¶¯ÎïµÄÌúµ÷ËØ´æÔÚ°±»ùËáÐòÁÐÏàËÆÐÔ£¬SARS-CoV-2 Spikeµ°°×µÄβ²¿ÇøÓòÓëÈËÀàÌúµ÷ËØ´æÔÚÏÔÖøµÄ°±»ùËáÐòÁÐÏàËÆÐÔ¡£ÈçÏÂͼËùʾ¡£

s13062-020-00275-2_13062_2020_275_Fig1_HTML_45p.PNG


ͼAÉÏͼ£ºSARS-CoV-2 Spikeµ°°×½á¹¹¡£

cytolasmic tail£¬Ö±ÒëΪϸ°ûÖʵÄβ²¿£¬Ô­Ö¸Ï¸°û¿çĤµ°°×ÑÓÉìÖÁϸ°ûĤÄÚ¡¢Ï¸°ûÖÊÖеÄβ²¿ÇøÓò£¬´Ë´¦Ö¸¹Ú×´²¡¶¾Spikeµ°°×ÑÓÉìÖÁ²¡¶¾°üĤÄÚµÄβ²¿ÇøÓò¡£

SpikeµÄβ²¿ÇøÓò£¨cytolasmic tail£©¶ÔÓ¦C-¶ËÇøÓò£¨C-terminal region/C-terminal domain£©£¬ÓëÖ®Ïà¶ÔµÄÊÇN-¶ËÇøÓò£¨N-terminal region/N-terminal domain£©¡£C-¶Ëָ̼¶Ë¡¢ôÈ»ù¶Ë¡¢COOH¶Ë£¬N-¶ËÖ¸µª¶Ë¡¢°±»ù¶Ë¡¢NH2¶Ë£¬ÔÚͼAÖУ¬Spike×ó¶ËÊÇN-¶Ë£¬ÓÒ¶ËÊÇC-¶Ë¡£

ͼAÏÂͼ£ºÈýÖÖ¹Ú×´²¡¶¾Spikeβ¶Î£¨C-terminal region/cytolasmic tail£©¡¢ËÄÖÖÌúµ÷ËØ¡¢SARS-CoV-2 Envelope£¨°üĤµ°°×£©µÄ°±»ùËáÐòÁбȶԡ£

±È¶ÔÇøÓò°üÀ¨47¸ö°±»ùËᣨ1210-1256£©¡£

MERS-CoV_Spike£¬MERS-CoV£¨Öж«ºôÎü×ÛºÏÖ¢²¡¶¾£©µÄSpikeµ°°×£»

SARS-CoV-2_Spike£¬SARS-CoV-2µÄSpikeµ°°×£»

Bat-CoV_Spike£¬Ò»ÖÖòùòð¹Ú×´²¡¶¾--JTMC15µÄSpikeµ°°×£¬JTMC15·¢ÏÖÓÚÖйú¼ªÁÖ£¬Ñù±¾ÊÕ¼¯ÓÚ2013Ä꣬ÐòÁÐÌá½»¡¢¹²ÏíÓÚ2015Ä꣬ËÞÖ÷ΪRhinolophus ferrumequinum£¨ÂíÌú¾ÕÍ·òð£¬ÓÖÃû´óòùòð¡¢»¨Á³òùò𣩡£JTMC15 Spikeµ°°×µÄGenbank·ÃÎʵØַΪ£º
https://www.ncbi.nlm.nih.gov/protein/ANA96027.1

Tr_Hepcidin-1£¬ºì÷¢¶«·½÷ƒ/ÈÕ±¾ºÓëàµÄÌúµ÷ËØ£¨hepcidin£©£¬¡®Tr¡¯±íʾTakifugu rubripes£¨ºì÷¢¶«·½÷ƒ£©/Japanese pufferfish£¨ÈÕ±¾ºÓëࣩ£»

Tr_Hepcidin-2£¬ºì÷¢¶«·½÷ƒ/ÈÕ±¾ºÓëàµÄÀàÌúµ÷ËØ£¨hepcidin-like£©£¬¸÷¸öºÓëàÎïÖÖ¶¼ÖÁÉÙ¾ßÓÐÒ»¸öhepcidin»ùÒòºÍÒ»¸öhepcidin-like »ùÒò£»

Rf_ Hepcidin£¬JTMC15µÄËÞÖ÷--ÂíÌú¾ÕÍ·òð£¨Rhinolophus ferrumequinum£©µÄÌúµ÷ËØ£»

Hs_Hepcidin£¬ÖÇÈË£¨Homo sapiens£©»òÈËÀàµÄÌúµ÷ËØ¡£

ͼÖÐÉîÂÌÉ«µÄ²Ð»ùΪ±£Êزлù£¬»ÒÉ«µÄ²Ð»ùΪÏàËƲлù£¬ºÚÉ«¼°ºÚÉ«¸ß¹âµÄ²Ð»ùΪÏàͬ²Ð»ù¡£

ͼB£ºÈËÀàÌúµ÷ËØ£¨Human Hepcidin£©µÄNMR£¨Nuclear Magnetic Resonance£¬ºË´Å¹²Õñ£©½á¹¹¡£

ͼBչʾÁËHuman HepcidinµÄ·´ÏòƽÐЦÂÕÛµþ£¨antiparallel beta-sheet fold£©½á¹¹£¬»ÆÉ«Çø¶Î±íʾµÄ°Ë¸ö°ëë×°±Ëá²Ð»ù£¨cysteine residues£©£¬Á¬ÏßָʾµÄ°ëë×°±Ëá²Ð»ù¼äµÄ4¸ö¶þÁò¼ü£¨disulfide bonds£©¡£

ͼC£ºSARS-CoV-2_Spikeβ²¿ÇøÓòÓëHs_HepcidinµÄ°±»ùËáÐòÁоֲ¿±È¶Ô¡£

ͼC±È¶ÔÇøÓò°üº¬26¸ö°±»ùËá²Ð»ù£¨1231~1256£©¡£

SARS-CoV-2_Spikeβ²¿ÇøÓòºÍHs_Hepcidin/Human Hepcidin¶¼¸ß¶È¸»¼¯°ëë×°±ËᣨCysteine£¬C£©£¬ÈçͼÖÐ×ÝÏò²¨ÎÆÏßËùʾ£¬SARS-CoV-2_SpikeÔڱȶÔÇøÓòÄÚÓÐ10¸ö°ëë×°±Ëá²Ð»ù£¬ÂÛÎijÆËüÃÇΪpotential palmitoylation residues£¨Ç±ÔÚµÄ×Øéµõ£»¯²Ð»ù£©£»Hs_HepcidinµÄ8¸ö°ëë×°±Ëá²Ð»ùÒ²¶¼ÔڱȶÔÇøÓòÄÚ£¬Í¼CÓÃÁ¬Ïß±ê³öÁË4¶Ô°ëë×°±Ëá²Ð»ùÖ®¼äµÄ4¸ö¶þÁò¼ü£¨S-S£©¡£

¶þÕß26¸ö±È¶Ô²Ð»ùÖÐÓÐ8¸öÏàͬ£¨CC¡¢C¡¢CG¡¢CCK£©£¬Í¬Ò»ÐÔԼΪ31%£»±È¶ÔÇøÓòºó7¸ö²Ð»ùÖÐÓÐ5¸öÏàͬ£¨CG¡¢CCK£©£¬Í¬Ò»ÐÔԼΪ71%£»±È¶ÔÇøÓòÄÚµÄ8¸öÏàͬ²Ð»ùÖУ¬6¸öÊÇ°ëë×°±Ëá²Ð»ù£¨Cysteine£¬C£©¡£

2¡¢SARS-CoV-2 £¨µÈijЩ¹Ú×´²¡¶¾£©Spikeβ²¿ÇøÓòÓëÌúµ÷Ëصݱ»ùËáÐòÁÐÏàËÆÐÔÊǶÀÌØÇÒÌØÒìµÄ£¬ËäȻӲ¹ÇÓ㣨teleosts£©ºÍ¼¹×µ¶¯Îvertebrates£©ÌåÄÚͨ³£º¬ÓÐÐí¶à¸»º¬°ëë×°±ËáµÄµ°°×ÖÊ£¨»ò¶àëÄ£©£¬
Moreover, there are many cysteine-rich protein sequences in teleosts and vertebrates in general, yet this similarity to the hepcidin gene family (not merely a one-off sequence) was unique and specific.

µ«BlastËÑË÷δÄÜ·¢ÏÖÓëSARS-CoV-2 Spikeβ²¿ÇøÓòÏàËƵÄÆäËüµ°°×»ò¶àëÄ¡£
The search that found hepcidin did not reveal a range of similarities with other teleost proteins.

Ò²¾ÍÊÇ˵£¬ÔÚÏÖÓÐÉúÎïÊý¾Ý¿âÖУ¬ÓëSARS-CoV-2 Spikeβ²¿ÇøÓò°±»ùËáÐòÁÐÏàËƵĵ°°×»ò¶àëÄÖ»ÓÐÌúµ÷ËØ£¨Ò»ÖÖÀàÐÍ£©¡£

Ó²¹ÇÓãÊÇËùº¬ÎïÖÖ×î¶àµÄÖ÷ÒªÓãÀàÀà±ð£¬³£¼ûÓãÀà¡¢´ó²¿·ÖÓÐò¢ÓãÀ඼ÊôÓÚÓ²¹ÇÓ㣬¹ãÒåÉϵÄÓ²¹ÇÓ㻹°üÀ¨ÓÉÓ²¹ÇÓãÑÝ»¯²úÉúµÄ½Éú¼¹×µ¶¯Îï¡£

Blast£¬Basic Local Alignment Search Tool£¨»ùÓÚ¾Ö²¿±È¶ÔËã·¨µÄËÑË÷¹¤¾ß£©£¬Ò»ÖÖ»ùÒò/µ°°×Ñо¿µÄÓÐÁ¦¹¤¾ß£¬»ù±¾¹¦ÄÜÊÇÔÚÉúÎïÊý¾Ý¿âÖÐËÑË÷Ö¸¶¨µÄ»ùÒò£¨ºËÜÕËᣩÐòÁУ¨/Ƭ¶Ï£©¡¢°±»ùËáÐòÁУ¨/Ƭ¶Ï£©µÄÆ¥ÅäÐòÁУ¬ÌṩƥÅäÁÐ±í¡¢ÐòÁмäµÄ±È¶Ôϸ½Ú¡¢¸÷ÖÖÆ¥Åä²ÎÊý¡¢Í¼Ðλ¯³ÊÏÖ¡£BlastÓÉNCBI£¨ÃÀ¹ú¹ú¼ÒÉúÎï¼¼ÊõÐÅÏ¢ÖÐÐÄ£©Ìṩ£¬¿ÉÔÚÏß×ÔÓÉʹÓá£

3¡¢±È¶ÔÁËÒÑÖªµÄÓÐÈËÀàÖ²¡ÄÜÁ¦µÄÆßÖÖ¹Ú×´²¡¶¾¡¢Ò»ÖÖòùòð¹Ú×´²¡¶¾µÄSpikeβ²¿ÇøÓòÓëËÄÖÖÌúµ÷Ëصݱ»ùËáÐòÁУ¬ÈçÏÂͼËùʾ¡£

s13062-020-00275-2_13062_2020_275_Fig2_HTML_40p.PNG


ÉÏ°ëͼ£ºÆßÖÖÈËÀàÖ²¡¹Ú×´²¡¶¾¡¢òùòð¹Ú×´²¡¶¾JTMC15µÄSpikeβ²¿ÇøÓòÓëËÄÖÖÌúµ÷ËØ°±»ùËáÐòÁеľֲ¿±È¶Ô£»
Ï°ëͼ£ºÉÏ°ëͼÖеÄ12¸öÐòÁУ¨±È¶ÔÇøÓòÄÚ²¿·Ö£©Á½Á½¼äµÄ°±»ùËáͬһÐÔ¡¢±£ÊØÐÔ£¨À¨ºÅÄÚÊý×Ö£©°Ù·Ö±È¡£

±È¶ÔÇøÓòͬÑù°üº¬26¸ö°±»ùËá²Ð»ù£¨1231~1256£©¡£

ͬһÐÔ°Ù·Ö±ÈÖ¸Á½¸öÐòÁÐÏàͬ°±»ùËá²Ð»ùµÄ°Ù·ÖÕ¼±È£»±£ÊØÐÔ°Ù·Ö±ÈÓ¦¸ÃÖ¸Á½¸öÐòÁÐÏàͬ¡¢ÏàËÆ¡¢±£ÊØ°±»ùËáµÄ°Ù·ÖÕ¼±È¡£

ÒÑÖªµÄÓÐÈËÀàÖ²¡ÄÜÁ¦µÄ¹Ú×´²¡¶¾¹²ÆßÖÖ£¬ËüÃÇÊÇ£ºHCoV-229E¡¢HCoV-NL63¡¢HCoV-HKU1¡¢HCoV-OC43¡¢MERS-CoV¡¢SARS-CoV-1¡¢SARS-CoV-2£¬Ç°ËÄÖÖ²¡¶¾Í¨³£Ö»ÒýÆðÆÕͨ¸Ðð£¬ÖÚËùÖÜÖª£¬ºóÈýÖÖ²¡¶¾¿ÉÒý·¢ÑÏÖØÖ¢×´²¢¿Éµ¼Ö»¼ÕßËÀÍö¡£

ÈçÇ°ËùÊö£¬Bat-CoVÖ¸´úÂíÌú¾ÕÍ·òð¹Ú×´²¡¶¾JTMC15¡£

ÉÏ°ëͼÖеÄÁ½¸öºÚÉ«¼ýͷָʾÁ½¸ö±£Êصİëë×°±Ëᣨcysteine£¬C£©Î»µã£¬ÕâÁ½¸öλµãµÄ°ëë×°±ËᣨC£©²Ð»ùΪ12¸öÐòÁÐËù¹²ÓУ»ºìÉ«¼ýͷָʾһ¸ö¸Ê°±Ëᣨglycine£¬G£©Î»µã£¬ËüΪËÄÖÖ¹Ú×´²¡¶¾£¨MERS-CoV¡¢SARS-CoV-1¡¢SARS-CoV-2¡¢JTMC15£©Spike¼°Á½ÖÖºÓëàÌúµ÷ËØ£¨Tr_Hepcidin-1¡¢Tr_Hepcidin-2£©ÐòÁÐËù¹²ÓС£

ÂÛÎijƣ¬Ç°Ëĸö´ÌÍ»µ°°×£¨¶ÔÓ¦ËÄÖÖÆÕͨ¸Ðð¹Ú×´²¡¶¾£©µÄ»ùÐò£¨motif£¬Ìض¨ÐòÁÐƬ¶Ï£©ÓëÆäÓàÐòÁеÄÏàËÆÐÔËƺõÒªÉÙ£¨there appears to be less similarity in the motif between the first four spike proteins than the rest of the sequences£©¡£

±ÊÕ߹۲죬¾ÍÁ½¸öºÚÉ«¼ýÍ·Ö®¼äµÄÇøÓò£¬¼°±È¶ÔÇøÓò26¸ö²Ð»ùµÄºó8¸ö²Ð»ù¶øÑÔ£¬°ËÖÖ¹Ú×´²¡¶¾ÖУ¬SARS-CoV-2¡¢SARS-CoV-1 Spikeβ²¿ÇøÓòÓëÈËÀà/ÖÇÈËÌúµ÷ËØ£¨Hs_Hepcidin£©µÄÏàËÆÐÔ¸üÏÔÖøһЩ£¬ÔڱȶÔÇøÓòºó8¸ö²Ð»ùÖУ¬¶þÕßÓëHs_HepcidinÓÐ5¸ö²Ð»ùÏàͬ£¨CG¡¢CCK£©£¬Æä´ÎÊÇJTMC15ºÍHCoV-OC43£¬¶þÕßÓëHs_HepcidinÓÐ4¸ö²Ð»ùÏàͬ£¨CG¡¢CC£©¡£²»Çå³þHs_Hepcidin±È¶ÔÇøÓòÄÚµ¹ÊýµÚ¶þ¸ö°±»ùËá²Ð»ù--Àµ°±ËᣨK£¬Lysine£¬83£©ÔÚÆä·Ö×Ó¡¢ÉúÀí¹¦ÄÜ£¨½áºÏ¡¢½µ½âÌúתÔ˵°°×£¬ÒÖÖÆÌúÊÍ·Å£¬¼õÉÙÑ­»·Ìú£©ÖеÄ×÷Óá£

²»¹ý£¬¾Í±È¶ÔÇøÓò26¸ö²Ð»ù×ÜÌå¶øÑÔ£¬SARS-CoV-2¡¢SARS-CoV-1¡¢JTMC15¡¢HCoV-OC43 ¡¢HCoV-HKU1ÎåÖÖ¹Ú×´²¡¶¾Spikeβ²¿ÇøÓòÓëHs_HepcidinµÄͬһÐÔÏàͬ£¬ËüÃÇÓëHs_Hepcidin¶¼ÓÐ8¸öÏàͬ²Ð»ù¡£

4¡¢²»ÄÑ·¢ÏÖ£¬SARS-CoV-1¡¢SARS-CoV-2 Á½ÖÖ²¡¶¾Spikeβ²¿±È¶ÔÇøÓòµÄ°±»ùËá²Ð»ù¼¸ºõÍêÈ«Ïàͬ£¬¶þÕß26¸ö±È¶Ô²Ð»ù½öÓÐ2¸ö²»Í¬£¬Í¬Ò»ÐԸߴï92%£¬¶þÕß½öÓеÄÁ½¸ö²îÒìλµã²Ð»ùÊÇL~M¡¢A~C¡£

±ÊÕß×¢£ºÕâÒâζ×Å£¬·¢ÉúÁ½¸ö°±»ùËáµÄÍ»±ä£¬SARS-CoV-1µÄ±È¶ÔÇøÓò¾Í¿ÉÑÝ»¯ÎªSARS-CoV-2µÄ¶ÔÓ¦ÇøÓò£»Í¬Ñù£¬ÊµÊ©Á½¸ö°±»ùËáµÄÌæ»»£¬¾Í¿É½«SARS-CoV-1µÄ±È¶ÔÇøÓò¸ÄÔìΪSARS-CoV-2µÄ¶ÔÓ¦ÇøÓò¡£Õâ±íÃ÷£¬SARS-CoV-2ÓëSARS-CoV-1Ô¨Ô´ÃÜÇУ¬¶þÕßҪôÓÐ×ÅÃÜÇеĽø»¯Ô¨Ô´£¬ÒªÃ´ÓÐ×ÅÃÜÇеÄÉè¼ÆÔ¨Ô´£¬ºóÒ»ÖÖÇé¿öÒâζ×Å£¬SARS-CoV-1µÄSpikeÊÇSARS-CoV-2 SpikeµÄÉè¼ÆÄ£°å£¨Ö®Ò»£©£¬×ª»ùÒò¸ÄÔìµ×°å£¨Ö®Ò»£©¡£

SARS-CoV-2ÊÇSARS-CoV-1ÔÚ¶¯ÎïËÞÖ÷ÌåÄÚ×ÔÈ»ÑÝ»¯¡¢×ÔÈ»ÖØ×é²úÉúµÄÂð£¿

5¡¢Ìúµ÷ËØÄܹ»½áºÏΨһµÄϸ°ûÌúÊä³öµ°°×¡ªÌúתÔ˵°°×£¨ferroportin£¬FPN£©²¢½éµ¼Æä½µ½â¡£±¾ÂÛÎı¨¸æµÄSARS-CoV-2 Spikeβ²¿ÇøÓòÓëÈËÀàÌúµ÷ËصÄÐòÁÐÏàËÆÐÔÄÜ·ñÔÚϸ°ûˮƽÉÏ·¢»ÓÖØÒª×÷Óã¿Õâһβ²¿ÇøÓòÊÇ·ñ¿ÉÒÔ²¿·ÖÄ£·ÂÌúµ÷ËØÓëÌúתÔ˵°°×µÄÏ໥×÷Óã¬ÊÇ·ñ¿ÉÒÔЭµ÷²¢½áºÏÌúתÔ˵°°×£¿ÓëÌúµ÷ËØÀàËƵÄSARS-CoV-2 Spikeµ°°×ÊÇ·ñ¿ÉÄÜͨ¹ý´Ù½ø£¨·ÎÅÝ£©¾ÞÊÉϸ°ûµÄÌú¹Ì´æ£¬´Ó¶ø×è°­ËÞÖ÷µÄ³õʼÃâÒß·´Ó¦£¿ÕâЩÎÊÌⶼÓдýʵÑéÑо¿¡¢È·¶¨¡£

s13062-020-00275-2_13062_2020_275_Fig3_HTML_55p.PNG

SARS-CoV-2 Spike¿ÉÄܵÄÌúµ÷ËØ×÷Óã¬ÈËÀàÌúµ÷ËصŦÄÜ£¬¼¸ÖÖÌúµ÷ËØ£¨Ê§µ÷£©Ïà¹ØµÄ¼²²¡µÄ×ܽá¸ÅҪͼ¡£

ÂÛÎÄûÓÐÌá¼°£¬SARS-CoV-2ÍâµÄÆäËü¹Ú×´²¡¶¾£¨ÈçSARS-CoV-1¡¢MERS-CoV£©ÊÇ·ñ¿ÉÄÜÄ£·ÂÌúµ÷ËصķÖ×Ó×÷ÓúÍÉúÀí¹¦ÄÜ£¨½áºÏ¡¢½µ½âÌúתÔ˵°°×£¬ÒÖÖÆÌúÊÍ·Å£¬¼õÉÙÑ­»·Ìú£©£¬¸ÉÔ¤¡¢¸ÉÈÅËÞÖ÷Ìú´úл¡£±ÊÕßûÓп´µ½ÓйØÆäËü¹Ú×´²¡¶¾¡¢ÆäËü²¡¶¾Ìúµ÷ËØÄ£·ÂµÄÂÛÎÄ¡£

ÂÛÎÄÒÀ¾ÝÈý

Iron dysregulation in COVID-19 and reciprocal evolution of SARS-CoV-2: Natura nihil frustra facit
COVID-19ÖеÄÌúʧµ÷ÓëSARS-CoV-2µÄ»¥»Ý½ø»¯£º´ó×ÔÈ»²¢Ã»ÓÐÊÜ´ì
https://onlinelibrary.wiley.com/doi/10.1002/jcb.30207

First published: 08 January 2022

ÂÛÎÄÑо¿ÁËSARS-CoV-2Ä£ÄâËÞÖ÷¼¤ËØ--Ìúµ÷ËصĻúÖÆ£¬²¢Í¨¹ýµ°°×Öʽ¨Ä££¨protein modeling£©¡¢¶Ô½Ó£¨docking£©ºÍMDÄ£Ä⣨Molecular Dynamics simulations£¬·Ö×Ó¶¯Á¦Ñ§Ä£Ä⣩֤Ã÷ÁËSARS-CoV-2µÄÌúµ÷ËØÄ£·ÂÄÜÁ¦¡£¼ÆËã»úÄ£ÄâÑо¿±íÃ÷£º

a) SARS-CoV-2 SpikeµÄβ²¿Æ¬¶Ï¡ª¡°Covidin¡±¶àëÄÄܹ»Ä£·ÂÌúµ÷ËصÄÌúתÔ˵°°×½áºÏÄÜÁ¦£¬¼´£¬CovidinÒ²Äܹ»½áºÏÌúתÔ˵°°×£¨ferroportin£¬FPN£©£»

¸ÃÑо¿²»ÄܶÔCovidinµÄÌúתÔ˵°°×½µ½âÄÜÁ¦×÷³öÃ÷È·Åжϣ¨Óдý²¡¶¾-ϸ°ûʵÑéÑéÖ¤£©£¬µ«ÂÛÎÄÖ¸³ö£¬Covidin¿ÉÄÜͨ¹ý·ºËص°°×øÌå;¾¶£¨via the ubiquitin proteasomal pathway£©ÒýÆðÌúתÔ˵°°×½µ½â£¬µ¼ÖÂËÞÖ÷Ìú´úлʧµ÷£»

¼´£¬ÕâÒ»¼ÆËã»úÄ£ÄâÑо¿µÄ½áÂÛÊÇ£¬SARS-CoV-2 SpikeµÄβ²¿Æ¬¶Ï¡ªCovidin¶àëÄÖÁÉÙÄܹ»Ä£·ÂÌúµ÷ËصIJ¿·Ö×÷ÓÃ--½áºÏÌúתÔ˵°°×¡£

b) Covidin¶ÔÖ÷ÒªµÄÈËÌåµ°°×ø¾ßÓп¹ÐÔ£¬ºÜÄѱ»½µ½âΪ¸üСµÄƬ¶Ï£»

c) ±àÂëCovidinµÄ»ùÒòÇøÓòÔÚ¸÷ÖÖSARS-CoV-2±äÌåÖи߶ȱ£ÊØ£¬¼«ÉÙ±äÒ죬CovidinƬ¶Ï¼¸ºõΪËùÓÐÒÑÖªµÄSARS-CoV-2±äÌåËù¹²ÓС£

¸ü¾ßÌåµØ£¬ÂÛÎÄÖ¸³ö£º

1¡¢SARS-CoV-2 SpikeÔÚÈËÌåÄÚ±»µ°°×ø½µ½â£¨Ë®½â£©ºó½«Îȶ¨µØÊͷųöÆäβ²¿Æ¬¶Ï£¬ÂÛÎijÆÕâһƬ¶ÏΪCovidinëÄ¡£CovidinëĶÔÖÚ¶àÈËÌåµ°°×ø¾ßÓп¹ÐÔ£¬ºÜÄÑÔÙ±»½µ½âΪ¸üСµÄƬ¶Ï¡£Î´Íê³ÉµÄ²¡¶¾×é×°£¨ÈçÔÚSARS-CoV-2¸´Öƹý³ÌÖÐϸ°ûËÀÍö£©Ò²½«²úÉú²¢ÏòÈËÌåÖÐÊÍ·ÅCovidinëÄ¡£CovidinëÄ´óÌå¾ÍÊÇ¡°ÂÛÎÄÒÀ¾Ý¶þ¡±Ëù˵µÄÓëÌúµ÷ËØ°±»ùËáÐòÁÐÏàËƵÄSARS-CoV-2 Spikeβ²¿ÇøÓò¡£

jcb30207-fig-0004-m_75p.JPG

SARS-CoV-2  Spikeµ°°×µÄÈËÌåµ°°×ø»îÐÔλµã·Ö²¼

ÓÉͼ¿É¼û£¬CovidinÇøÓòÄÚÈËÌåµ°°×ø»îÐÔλµã£¨Áѽâλµã£©¼«ÉÙ£¬ÕâÒâζ×ÅËüºÜÄÑÔÙ±»ÈËÌåµ°°×ø½µ½âΪ¸üСµÄƬ¶Ï¡£

QHD43416ÊÇSARS-CoV-2 Wuhan-Hu-1¶¾ÖêSpikeµ°°×µÄGenbank ACCESSION£¨ÐòÁбàºÅ£©¡£

ÂÛÎÄʹÓÃiProt-Sub Server ºÍMEROPS databaseÔ¤²â¡¢ÑéÖ¤ËÞÖ÷µ°°×øÌØÒìÐÔºÍSpikeµ°°×µÄµ°°×øÁѽâλµã¡£ÉÏͼ»ã×ÜÁ˶ÔËĸöÖ÷Òªµ°°×ø¼Ò×壨aspartic,cysteine,metallo-,and serine£©µÄ38ÖÖ²»Í¬µ°°×øµÄÔ¤²â¡¢ÑéÖ¤½á¹û¡£

AsparticÖ¸Ì춬°±Ëáµ°°×ø£¨Aspartic protease£©¼Ò×壻
CysteineÖ¸°ëë×°±Ëáµ°°×ø£¨Cysteine proteases£©¼Ò×壻
MetalloÖ¸½ðÊôµ°°×ø£¨Metalloproteases£©¼Ò×壻
Serineָ˿°±Ëáµ°°×ø£¨Serine proteases£©¼Ò×å¡£

ÉÏÊöËĸöµ°°×ø¼Ò×å¼ÓÉÏÁíÍâ¶þ¸ö¼Ò×壺ËÕ°±Ëáµ°°×ø£¨Threonine proteases£©¼Ò×å¡¢¹È°±Ëáµ°°×ø£¨Glutamic acid proteases£©¼Ò×壬ºÏ³ÆÁù´óµ°°×ø¼Ò×å¡£

2¡¢±àÂëCovidinëĵÄRNAÇøÓòÔÚÒÑʶ±ðµÄÖÚ¶àSARS-CoV-2±äÌåÖи߶ȱ£ÊØ£¨¼¸ºõ100%±£ÊØ£©£¬Í»±äÂʼ«µÍ¡£GSAIDÊý¾Ý¿âÖÐ2019Äê12ÔÂÖÁ2021Äê8Ô¼ä²ÉÑùµÄ4298¸öSARS-CoV-2»ùÒò×éÊý¾ÝÏÔʾ£¬Covidin±àÂëÇøÓòµÄƽ¾ùÍ»±ä¶àÑùÐÔ£¨average mutational diversity£©Îª0.0028£¬Ô¶µÍÓÚÓëÈ«»ùÒò×éƽ¾ùÍ»±ä¶àÑùÐÔ0.2£¬¼°´ÌÍ»µ°°×ƽ¾ùÍ»±ä¶àÑùÐÔ0.05¡£

jcb30207-fig-0003-m_75p.JPG

SARS-CoV-2 »ùÒò×鲻ͬÇøÓò/λµãµÄµ±Ç°Í»±äÂÊ£¨Current mutation rates£©

ͼA£ºÈ«»ùÒò×éÍ»±äÂÊ£»Í¼B£ºSpikeµ°°×±àÂëÇøÓòÍ»±äÂÊ£»Í¼C£ºCovidin±àÂëÇøÓòÍ»±äÂÊ¡£

ÓÉͼC¿É¼û£¬Covidin±àÂëÇøÓòÄÚ¼¸ºõûÓÐÈκÎÍ»±äλµã¡£

£¨Í¼AÏÔʾµÄSpikeÇøÓòµÄÍ»±äÃܶȡ¢Í»±äƵÂÊËƺõ¸ßÓÚ»ùÒò×é´ó¶àÊýÇøÓò£©

Covidinëĵĸ߶ȱ£ÊØÐÔ£¬ÔÚ¸÷ÖÖ±äÌåÖеĸ߶ÈÒ»ÖÂÐÔ¡¢¸ß¶ÈÎȶ¨ÐÔÒâζ×Å£¬SARS-CoV-2 Spike-CovidinëĶÔÌúµ÷ËصķÖ×Ó×÷ÓÃÄ£ÄâºÍ¿ÉÄܵÄÉúÀí¹¦ÄÜÄ£Ä⣬ËùÒý·¢µÄÌú´úлʧµ÷ºó¹ûÊÊÓÃÓÚ¼¸ºõËùÓÐÒÑÖªµÄSARS-CoV-2±äÌå¡£

3¡¢CovidinµÄëÄÄ£ÐÍÓëHepcidin£¨½á¹¹£©¸ß¶ÈÏàËÆ£¬¶þÕßÓëÌúתÔ˵°°×£¨ferroportin£¬FPN£©µÄÏ໥×÷ÓÃÒ²ÏÔÖøÏàËÆ¡£

The peptide models of Covidin were highly similar to Hepcidin (Figure 6). The docking with modeled ferroportin showed biochemical conservancies, and the interactions observed also have significant physiological mimicry of host Hepcidin.

HepcidinºÍCovidin¾ùÓëÌúתÔ˵°°×ϸ°ûÍâÓòµÄÖÐÐĿף¨central pore of Ferroportin's extracellular domains£©Ç¿ÁÒ½áºÏ£¬Covidin-Ferroportin¸´ºÏÎïÓëHepcidin-Ferroportin¸´ºÏÎïÓÐ×ÅÏàËƵĽ»»¥×÷ÓÃÌØÕ÷ºÍ½áºÏ¿Õ¼ä£»
Both Hepcidin and Covidin bind strongly to the central pore from the extracellular space of a host iron transporter ¡°ferroportin¡± and the resulting complex has similar interaction features and binding space as the natural hormone Hepcidin.

Ferroportin½áºÏHepcidinµÄλµãÓëÆä½áºÏCovidinµÄλµãÓÐ85%µÄ¿Õ¼äÖصþ£¨spacial overlap£©£»MDÄ£Ä⣨Molecular Dynamics simulation£©±íÃ÷£¬±ÈÖ®Hepcidin£¬CovidinÓëFerroportinÓиü¶àµÄÏ໥×÷Óã¬Covidin-Ferroportin¸´ºÏÎï±ÈHepcidin-Ferroportin¸´ºÏÎï¸üÎȶ¨¡£

The interaction MAP revealed 85% spacial overlap in the binding site, and Covidin has more interactions with the target ferroportin (Figure 7).

But as seen with the interaction map, the Covidin-ferroportin complex was more stable than the Hepcidin-ferroportin complex.

³¤MDÄ£Ä⣨100ns£©ÎÞ·¨½ÒʾHepcidin»òCovidinÈçºÎ´Ù½øÌúתÔ˵°°×·ºËØ»¯ºÍ½µ½â¡£

Long MD simulations (100 ns) could not reveal how Hepcidin or Covidin promote ferroportin ubiquitination and degradation,

jcb30207-fig-0006-m_90p.JPG

Figure 6 ÌìÈ»Ìúµ÷ËØ(A)¡¢Covidin(B)·Ö±ðÓëÌúתÔ˵°°×ÖÐÐĿ׶ԽӵÄ3D½á¹¹Ê¾Òâͼ

±ÊÕß×¢£º´Ó´ËͼËƺõ¿´²»³öCovidinÓëHepcidin½á¹¹µÄ¸ß¶ÈÏàËÆÐÔ¡£

jcb30207-fig-0007-m_70p.JPG

Figure 7 Hepcidin(A)¡¢Covidin(B)·Ö±ðÓëFerroportin°ûÍâ½á¹¹ÓòÖÐÐĿ׽áºÏµÄ°±»ùËá×÷ÓÃϸ½Ú¶Ô±Èͼ

ÂÛÎÄ´óͼµØÖ·£º
https://onlinelibrary.wiley.com/cms/asset/6971cb5a-f49b-4046-95a1-825e105dfb21/jcb30207-fig-0007-m.jpg

4¡¢¸ÐȾ×éÖ¯ÖеĴóÁ¿Covidin¿ÉÄÜÊÇSARS-CoV-2¸ÐȾÒý·¢ARDS£¨acute respiratory distress syndrome£¬¼±ÐÔºôÎü¾½ÆÈ×ÛºÏÕ÷£©µÄ´Ù³ÉÒòËØÖ®Ò»¡£¸ÐȾ×éÖ¯ÖеÄCovidin¿ÉÄÜÀ´×Ô³ÉÊìSARS-CoV-2²¡¶¾SpikeµÄ½µ½â£¬Ò²¿ÉÄÜÀ´×Ô´¹ËÀµÄ±»¸ÐȾϸ°û£¨Èç·Î³ÉÏËάϸ°û£©ÖÐδÍê³ÉµÄSARS-CoV-2¸´ÖÆ¡¢×é×°£»

ÎÒÃǵĵ°°×Ë®½â¡¢µ°°×Öʽ¨Ä£¡¢ëĶԽӺÍMDÄ£ÄâʵÑéÓÐÁ¦µØÖ§³ÖÁËCovidinÄ£ÄâËÞÖ÷HepcidinÉúÎ﹦ÄܵļÙÉ裻

Our proteolysis, protein modeling, peptide docking, and MD simulation experiments strongly support functional biological mimicry of Covidin with the natural host Hepcidin hormone.

SARS-CoV-2¶ÔHepcidinµÄÄ£Ä⣬¶ÔÈËÌåÌú´úлµÄ¸ÉÔ¤£¬¿ÉÄÜÓëÆäÏà¶Ô½Ï´óÇÒ×ÊÔ´Ãܼ¯Ð͵ĸ߲¡¶¾ÖÜתÂʵ¼ÖµĸßÌúÐèÇóÓйأ¨SARS-CoV-2µÄ¸´Öƹý³ÌºÜ¿ÉÄÜÒ²ÐèÒªÌú£©£»

ÓÉÓÚCovidinÄ£·ÂHepcidin£¬Òò´ËËüÓ¦¸Ãͨ¹ý·ºËص°°×øÌå;¾¶£¨via the ubiquitin proteasomal pathway£©ÒýÆðÌúתÔ˵°°×£¨ferroportin£©½µ½â£¬Òò¶øµ¥¶ÀµÄÞ׿¹¼Á²»ÄÜÄæתϸ°ûÄÚÌú³¬ÔØ¡£

As Covidin mimics Hepcidin, it should, therefore, cause ferroportin degradation via the ubiquitin proteasomal pathway, whereby antagonists alone cannot reverse the intracellular iron overload.
£¨ÌúתÔ˵°°×½µ½âʹѪÇåÌú½µµÍ£¬£©µÍѪÇåÌúµ¼Öºìϸ°ûÉú³É¼õÉÙ£¬Õâ¿ÉÄܼÓËÙȱÑõ£¬Ê¹»¼Õß²¡ÇéѸËÙ¶ñ»¯¡£¸ù¾Ý×î½ü¹ØÓÚSARS-CoV-2ÈëÇÖºìϸ°ûÉú³Éϸ°ûµÄ±¨µÀ£¬ÕâÖÖ£¨ÌúתÔ˵°°×½µ½âÒý·¢µÄ£©È±Ñõ¿ÉÄÜ»áÒò´Ë¶ø½øÒ»²½¼Ó¾ç¡£

The hypoxia might also be accelerated by reduced erythropoiesis due to low serum iron, rapidly deteriorating a patient's condition, and aggravating COVID-19 morbidity. This hypoxia may be further aggravated based on recent reports of SARS-CoV-2 invading erythropoietic cells.98

jcb30207-fig-0010-m_75p.JPG

Ìúµ÷ËØÑùëÄCovidinÒý·¢µÄ¼ÙÉèµÄÌúʧµ÷£¬ÓëCOVID-19 »¼Õßʵ¼ÊÁÙ´²Çé¿öµÄ¹ØÁª¿¨Í¨Í¼¡£

5¡¢Ìúµ÷ËØ£¨Hepcidin£©½«½áºÏ¡¢ÄÚ»¯¡¢½µ½âÌúתÔ˵°°×£¨ferroportin£©£¬¼õÉÙѪÇåÖеÄÌú£¬Ôö¼Ó£¨Ð¡³¦ÉÏƤϸ°û¡¢¾ÞÊÉϸ°û¡¢Ì¥ÅÌϸ°ûµÈ£©Ï¸°ûÄÚµÄÌú£¬Èç¹ûËÞÖ÷HepcidinºÍ¿ÉÄ£ÄâHepcidinµÄCovidin¶¼´¦ÓÚ¸ßˮƽ£¨SARS-CoV-2¸ÐȾµÄ¹ý¶ÈÑ×Ö¢-hyperinflammation·´Ó¦½«ÌáÉýHepcidinˮƽ£©£¬ÄÇô£¬½«¿ÉÄÜʹϸ°ûÄÚµÄÌú´ïµ½Óж¾Ë®Æ½£¬Èç¹ûϸ°ûÄÚµÄÌú¸ºÔؼ°Ìú½éµ¼µÄ×ÔÓÉ»ù³¬³öÁËÌúµ°°×£¨ferritin£¬Ï¸°ûÄÚµÄÌú´¢´æµ°°×£©µÄÈÝÄɺÍϸ°ûµÄ³ÐÊÜÄÜÁ¦£¬½«µ¼ÖÂϸ°ûÌúËÀÍö¡£¹ýÁ¿Ìú½éµ¼¡¢´ß»¯µÄ×ÔÓÉ»ù£¨free radicals£©Ëæ×Åϸ°ûÌúËÀÍö¶øÊͷŵ½×éÖ¯ÒºÖУ¬¶ÔÖÜΧϸ°ûÒ²Óж¾ÐÔ¡£

jcb30207-fig-0011-m_65p.JPG

COVID-19²¡ÀíѧºÍ½ø»¯µÄ²»Í¬×Ó¼¯µÄÆÆÒë¹Øϵ¸ÅÀÀ


ÂÛÎÄÒÀ¾ÝËÄ

Iron and iron-related proteins in COVID-19
COVID-19ÖеÄÌúºÍÌúÏà¹Øµ°°×
https://link.springer.com/article/10.1007/s10238-022-00851-y

Published: 18 July 2022

ÂÛÎĻعËÁËÌúºÍÌú£¨´úл£©Ïà¹ØµÄ¸÷ÖÖµ°°×¡¢¶àëÄÔÚCOVID-19ÖеÄ״̬£¨Éý¸ß¡¢½µµÍ£¬²»Í¬ÑÏÖس̶Ȼ¼Õß¼äµÄ²îÒ죩£¬È«Ãæ×ܽᡢ½éÉÜÁËÒѱ¨¸æµÄSARS-CoV-2¸ÐȾÒýÆðµÄÌúºÍÌúÏà¹Øµ°°×¡¢¶àëÄ¿ÉÄܵÄ״̬¸Ä±ä£¬ÏàÓ¦µÄÁÙ´²¼ì²âÊý¾Ý¡¢½á¹ûºÍÑо¿½áÂÛ£¬Ì½ÌÖ¡¢½âÎöÁËÌú´úлÏà¹Øµ°°×¡¢¶àëÄÔÚCOVID-19ÖеÄÏ໥×÷Óá¢Ï໥¹ØÁª¡¢Ï໥ӰÏ죬ËüÃǵÄÁÙ´²Êý¾ÝÖ®¼ä¼ä¹ØϵºÍ»¥¶¯¡£

ÂÛÎÄ¿¼²ìµÄ²ÎÓëCOVID-19²¡Àí»úÖƵÄÌú´úлÏà¹Øµ°°×¡¢¶àëÄ°üÀ¨£ºÌúµ°°×£¨Ferritin£©¡¢Ìúµ÷ËØ£¨Hepcidin£©¡¢×ªÌúµ°°×£¨Transferrin£©¡¢×ªÌúµ°°×ÊÜÌ壨transferrin receptor£©¡¢ÈéÌúµ°°×£¨Lactoferrin£©¡¢Ñªºìµ°°×£¨Hemoglobin£©¡¢Ö¬ÖÊÔËÔص°°×-2£¨Lipocalin-2£©¡£

ÏÂÃæÊÇÂÛÎĵÄ×ܽá×ÛÊöͼ£º

10238_2022_851_Fig1_big_HTML_45p.PNG

×ܽá×ÛÊöͼ£ºÌú´úлÏà¹ØÒò×ÓÔÚCOVID-19ÖеÄ״̬£¬ËüÃÇÖ®¼äµÄÏ໥¹ØÁª¡¢Ï໥ӰÏ죬ÔÚCOVID-19²¡Àí»úÖÆÖеĽÇÉ«¡£

ÂÛÎÄÁ½´ÎÌáµ½SARS-CoV-2 SpikeµÄÌúµ÷ËØÄ£·Â£¬ÓйØÄÚÈÝժ¼ÈçÏ£º

¸ßˮƽµÄÑ­»·Ìúµ÷ËØ¿ÉÒÖÖƳ¦µÀÌúÎüÊÕ£¬²¢Í¨¹ý½µ½âϸ°ûÌúתÔ˵°°×£¨ferroportin£©½«ÌúËø¶¨ÔÚÌú´¢´æºÍÌú»ØÊÕϸ°ûÄÚ¡£Õâ¿ÉÒÔ·ÀÖ¹£¨ÑªÒº£©Ñ­»·ÖÐÌúˮƽµÄÉý¸ß¡£Òò´Ë£¬Ñ×Ö¢ÓÕµ¼µÄÌúµ÷ËØÔö¼Ó£¨inflammation-induced hepcidin increment£©µ¼ÖÂÈ«ÉíÐÔµÍÌúѪ֢£¨µÍÌúѪָµÍѪÇåÌúˮƽ£¬low serum iron levels£©¡£´ËÍ⣬·¢ÏÖÁËSARS-CoV-2 Spikeµ°°×ÓëÌúµ÷ËØÖ®¼äµÄ½á¹¹ÏàËÆÐÔ£¬¾ÝÍƲ⣬²¡¶¾£¨SARS-CoV-2£©Spikeµ°°×¿ÉÄܾßÓÐÌúµ÷ËØÄ£Äâ×÷Óã¨hepcidin-mimetic action£©²¢ÓÕµ¼ÌúתÔ˵°°××è¶Ï£¨ferroportin blockage£©¡£Èç¹ûÕâÒ»ÍƲâÕýÈ·£¬ÄÇôÕ⽫½øÒ»²½´Ù½øϸ°ûÄÚÌúäóÁô²¢¼Ó¾çÈ«ÉíÐÔµÍÌúѪ֢£¨systemic hypoferremia£©¡£

High levels of circulatory hepcidin inhibit intestinal iron absorption and lock iron within the iron-storing and iron-recycling cells by degrading the cellular-iron transporter ferroportin. This prevents iron entry and subsequent iron elevation in the circulation [111]. Thus, inflammation-induced hepcidin increment leads to systemic hypoferremia (low serum iron levels) [112]. In addition, structural similarity has been identified between hepcidin and SARS©CoV©2 spike protein. It has been hypothesized that the viral spike protein may have a hepcidin-mimetic action and induce ferroportin blockage [81]. If correct, then this can further promote intracellular iron retention and contribute to systemic hypoferremia.

¡£¡£¡£

µÍÌúѪ֢£¨hypoferremia£©Ò²¿ÉÄÜÓÉÌúµ÷ËØÉý¸ßÒÔÍâµÄÔ­ÒòÒýÆð¡£ÀýÈ磬¿ÉÄÜÓÉSARS-CoV-2 Spikeµ°°×Íƶ¨µÄÌúµ÷ËØÄ£Äâ×÷Óã¨the putative hepcidin-mimetic action£©ÒýÆð£¬Ëü½«×è¶ÏÌúתÔ˵°°×£¨ferroportin£©£¬¼õÉÙÌú½øÈ루ѪҺ£©Ñ­»·£¬µ¼ÖµÍÌúѪ֢¡£ÁíÒ»¸ö¿ÉÄܵÄÔ­ÒòÊÇѪÇåÌúµ°°×£¨serum ferritin£©Éý¸ß¡£ÕýÈçÔÚCOVID-19Öй۲쵽µÄÄÇÑù£¬³ýÁËÌáÉýѪÇåÌúµ÷ËØÍ⣬Ñ×Ö¢»¹ÌáÉýÌúµ°°×£¨ferritin£©Ë®Æ½¡£Ìúµ°°×¿ÉÒÔòüºÏ£¨sequester£©´óÁ¿ÌúÀë×Ó£¨iron ions£©£¬²¢ÇÒ£¬Ïà±ÈתÌúµ°°×£¨transferrin£¬Tf£©£¬ÌúÓëÌúµ°°×ºÍÈéÌúµ°°×£¨lactoferrin £¬Lf£©µÄ½áºÏÇ׺ÍÁ¦¸ü¸ß£¨ÔÚCOVID-19 ÖÐתÌúµ°°×ˮƽ½µµÍ£©£¬Ìúµ°°×¶ÔÌúµÄ´óÁ¿òüºÏÒ²¿ÉÄܵ¼ÖµÍÌúѪ֢£¨hypoferremia£©¡£

In such cases, hypoferremia may be caused due to reasons other than hepcidin elevation. For example, this could be due to the putative hepcidin-mimetic action of the viral protein [81], which would block ferroportin and thereby reduce iron entry into the circulation leading to hypoferremia. Another reason could be elevated serum ferritin. In addition to elevating serum hepcidin, inflammation elevates ferritin levels, as observed in COVID-19 (Table 1). Ferritin can sequester a large number of iron ions, and the higher affinity of iron to ferritin and lactoferrin than transferrin (although transferrin levels are reduced in COVID-19) may assist in this sequestration process and contribute to hypoferremia.

ÂÛÎÄÒÀ¾ÝÎå

The Relationship Between Hepcidin-Mediated Iron Dysmetabolism and COVID-19 Severity:  A Meta-Analysis
Ìúµ÷Ëؽ鵼µÄÌú´úлÒì³£ÓëCOVID-19ÑÏÖس̶ȵĹØϵ£ºÒ»ÏîÜöÝÍ·ÖÎö
https://www.frontiersin.org/articles/10.3389/fpubh.2022.881412/full

Front. Public Health, 26 April 2022

ÂÛÎÄÖ¼ÔÚÆÀ¹ÀÌúµ÷ËØÏà¹ØµÄÌú´úлÒò×Ó£¨µ°°×¡¢¶àëÄ£©ºÍÏà¹Ø²ÎÊý£¬Ì½ÌÖÌúµ÷ËزÎÓëµÄÌú´úлÒì³££¨iron dysmetabolism£©ÓëCOVID-19 ÑÏÖس̶ÈÖ®¼äµÄ¹Øϵ¡£ÂÛÎÄ¿¼²ìÁË477Ãû²»Í¬ÑÏÖس̶ȵÄCOVID-19»¼Õߣ¬ÕâЩ»¼ÕßµÄÁÙ´²¼ì²âÊý¾Ý±íÃ÷£ºÖØÖ¢COVID-19²¡ÀýѪÇåÌúµ÷ËØ£¨serum hepcidin£©Ìúµ°°×£¨serum ferritin£©Ë®Æ½½Ï¸ß£¬ÑªÇåÌú£¨serum iron£©Ë®Æ½½ÏµÍ£¬µ«×ªÌúµ°°×±¥ºÍ¶È£¨transferrin saturation£©ÎÞÏÔ×ŲîÒì¡£ÂÛÎÄÈÏΪ£¬ÐèÒª½øÒ»²½µÄÑо¿À´ÑéÖ¤Ìúµ÷Ëؽ鵼µÄÌú´úлÖᣨiron metabolism axis£©ÔÚCOVID-19²¡ÀíºÍÖÎÁÆÖеģ¨È·ÇУ©×÷Óá£

¹ØÓÚSARS-CoV-2 Spikeµ°°×µÄÌúµ÷ËØÄ£·Â£¬ÂÛÎÄÖ¸³ö£º

Ehsani£¨¡°ÂÛÎÄÒÀ¾Ý¶þ¡±µÄ×÷Õߣ©Ç¿µ÷ÁËSARS-CoV-2 SpikeÌǵ°°×ºÍÌúµ÷ËضàëÄÖ®¼ä°±»ùËáÐòÁеľªÈËÏàËÆÐÔ£¬ÕâÒ»¹Û²ì½á¹ûΪSARS-CoV-2µÄÒßÃçÉè¼ÆºÍÉúÎ﹤³Ì¿¹Ì忪·¢ÌṩÁË˼·¡£SARS-CoV-2µÄÌúµ÷ËØÄ£Äâ×÷Óã¨Hepcidin-mimetic action of SARS-CoV-2£©¿ÉÄÜ»áÏÔ×ÅÔö¼ÓÑ­»·Ìúµ°°×ºÍ×éÖ¯Ìúµ°°×£¨circulating and tissue ferritin£©£¬Í¬Ê±ÓÕµ¼SI£¨serum iron£©È±·¦¡£È»¶ø£¬SARS-CoV-2ÊÇ·ñÀûÓÃϸ°ûĤÉϵÄÌúתÔ˵°£¨ferroportin£©×÷ΪÇÖÈëËÞÖ÷ϸ°ûµÄÁíÒ»ÖÖSpike½áºÏÊÜÌ壬»¹ÐèÒª½øÒ»²½·ÖÎö¡£´ËÍ⣬SARS-CoV-2ÊÇ·ñͨ¹ýÄ£·ÂÌúµ÷ËØÖ±½Ó½µ½âÌúתÔ˵°°×£¨whether SARS-CoV-2 directly degrades ferroportin through mimicking hepcidin£©£¬»òͨ¹ýÑ×Ö¢¼ä½ÓÉϵ÷Ìúµ÷ËØÒԽ鵼Ìú´úлÕÏ°­£¬Ò²ÐèÒª×ÐϸÑо¿¡£

Ehsani highlighted the striking similarity between the amino acid sequence of the SARS-CoV-2 spike glycoprotein and the hepcidin protein (37). This observation provides ideas for vaccine design and bioengineered antibody development for SARS-CoV-2. Hepcidin-mimetic action of SARS-CoV-2 may markedly increase circulating and tissue ferritin, while inducing SI deficiency (32, 33). However, whether SARS-CoV-2 utilizes ferroportin on the cell membrane as another binding receptor for the spike protein to invade host cells requires further analysis. Moreover, whether SARS-CoV-2 directly degrades ferroportin through mimicking hepcidin or indirectly upregulates hepcidin through inflammation to mediate iron dysmetabolism also needs to be carefully investigated.

ÂÛÎÄÒÀ¾ÝÁù

SciELO - Brazil - SARS-CoV-2 association with hemoglobin and iron metabolism
SARS-CoV-2ÓëѪºìµ°°×ºÍÌú´úлµÄ¹ØÁª
https://www.scielo.br/j/ramb/a/Mb65VBcXPsgS5z6Y86zwjjm/

Med. Bras. • Sept 2021

ÂÛÎÄÈ«Ãæ»Ø¹ËÁËÈËÌåÌú´úл»úÖÆ¡¢Ìúµ÷ËØÔÚÌú´úлÖеĵ÷½Ú×÷Ó㬿¼²ì¡¢Ì½ÌÖÁËSARS-CoV-2¸ÐȾÒý·¢µÄ¶àÖÖ²¢·¢Ö¢£¬°üÀ¨¹¦ÄÜÕÏ°­ÐÔѪºìµ°°×²¡¡¢Ìúµ÷ËØˮƽÉý¸ß¡¢Ñõ»¯Ó¦¼¤ºÍ£¨Ï¸°û£©ÌúËÀÍö¡¢È«ÉíÐÔµÍÑõѪ֢ºÍ¸ßÌúµ°°×Ѫ֢µÄÄÚÔÚ»úÖÆ£¬·ÖÎö¡¢Ö¸³öÁËSARS-CoV-2¸ÐȾ¶ÔÌúµ÷ËصÄÓ°Ï죬SARS-CoV-2µÄÌúµ÷ËØÄ£·ÂÕâÁ½·½ÃæµÄÒòËØÓëÕâЩ²¢·¢Ö¢µÄ¿ÉÄܵÄÄÚÔÚ¹ØÁª¡£

¹ØÓÚSARS-CoV-2 Spikeµ°°×µÄÌúµ÷ËØÄ£·Â£¬ÂÛÎÄÖ¸³ö£º
Esaki£¨¾ÍÊÇ¡°ÂÛÎÄÒÀ¾Ý¶þ¡±µÄ×÷ÕßEhsani£©Ö¸³ö£¬¹Ú×´²¡¶¾Spikeµ°°×µÄ°±»ùËáÐòÁÐÓëÌúµ÷ËØÏàͬ£¨Ó¦ÎªÏàËÆ£©£¬Ìúµ÷ËØÊÇÌú´úлµÄÖ÷Ҫϵͳµ÷½Ú¼Á¡£¹Ú×´²¡¶¾Spikeµ°°×ÓëÌúµ÷ËØÖ®¼äµÄÕâÖÖÏàËÆÐÔÄܹ»µ¼ÖÂÄ£·ÂЧӦ£¨mimetic effect£©£¬Õ⣨»òÐí£©Òâζ×ÅSARS-CoV-2¿ÉÒÔÔö¼ÓѪÇåÌúµ÷ËØ£¨»òÆäÄ£ÄâÎ£¬È»ºóÔö¼ÓÌúµ°°×£¨ferritin£©£¬²¢ÒýÆð¸ßÌúµ°°×Ѫ֢×ÛºÏÖ¢£¨hyperferritinemic syndrome£©¡£

Esaki demonstrated that the amino acid sequence of the coronavirus spike protein is identical to hepcidin, a protein that acts as the main systemic regulator of iron metabolism. Therefore, this similarity between hepcidin and coronavirus spike protein can lead to a mimetic effect, suggesting that SARS-CoV-2 can increase serum hepcidin and then ferritin, and cause hyperferritinemic syndrome5.

Òò´Ë£¬¹¦ÄÜÕÏ°­ÐÔѪºìµ°°×²¡£¨dysfunctional hemoglobinopathy£©ÓëSARS-CoV-2Ïà¹ØµÄ¸ßÌúµ°°×Ѫ֢£¨SARS-CoV-2-related hyperferritinemia£©Ö®¼äµÄ¹ØÁª¿ÉÄÜÓ°Ïìºìϸ°ûµÄÑõÔËÊäÄÜÁ¦£¬µ¼ÖÂȱÑõ£»Í¬Ê±£¬·ÇתÌúµ°°×½áºÏÌú£¨non-transferrin bound iron£¬NTBI£¬Î´ÓëתÌúµ°°×½áºÏµÄÌú£©µ¼ÖÂ×éÖ¯ËðÉË£¬²¢ÔÚÑ×Ö¢²¿Î»ÊÍ·Å×ÔÓÉ»ù£¨free radicals£©¡£

Therefore, the association between dysfunctional hemoglobinopathy and SARS-CoV-2-related hyperferritinemia may affect the oxygen transport capacity of erythrocytes, thereby leading to hypoxia, while causing tissue damage due to non-transferrin bound iron (NTBI), and subsequently releasing free radicals at the inflammation sites6.

¡£¡£¡£

Ìú¶¾ÐÔ£¨iron toxicity£©ÔÚCOVID-19²¡ÀíÉúÀíѧÖеĽÇÉ«ÓëSARS-CoV-2µÄÌúµ÷ËØÄ£ÄâЧӦ£¨the hepcidin mimetic effect of SARS-CoV-2£©Óйأ¬ÌúתÔ˵°°×£¨ferroportin£©ÔÚ賦µÀºÍÍø×´ÄÚƤϵͳÖеÄÄÚ»¯£¨internalization£©£¬µ¼ÖÂSF£¨Serum ferritin£¬ÑªÇåÌúµ°°×£©µÄ¿ÉÓÃÐÔÊÜ×裬Õâ½ø¶øµ¼ÖÂƶѪ£¨anemia£©ºÍ¸ßÌúµ°°×Ѫ֢£¨hyperferritinemia£©£¬²¢×îÖÕÔì³Éϸ°ûÌúËÀÍö£¨ferroptosis£©¡£

The role of iron toxicity in the pathophysiology of COVID-19 is related to the hepcidin mimetic effect of SARS-CoV-2, with consequent internalization of ferroportin, both in the gastrointestinal tract and reticuloendothelial system, thereby causing a blockage in the availability of SF, which leads to anemia and hyperferritinemia, and ultimately ferroptosis5,17.

ͨ¹ýÄ£·ÂÌúµ÷ËصÄ×÷Óã¨Through mimicking the action of hepcidin£©£¬SARS-CoV-2¹ý¶ÈÔö¼Ó×éÖ¯ÄÚ£¨ÀýÈç¸ÎÔࡢƢÔà¡¢¹ÇËèºÍ¼¡È⣩Ìúµ°°×£¨ferritin£©µÄŨ¶È£¬Í¬Ê±¼õÉÙSF£¨Serum ferritin£©µÄ¿ÉÓÃÐÔ£¬´Ó¶ø¼õÉÙºìϸ°ûµÄ²úÉú¡£Ñ­»·ºìϸ°û£¨circulating erythrocytes£©µÄ¼õÉÙµ¼Ö³ÖÐøÐÔµÄÈ«ÉíµÍÑõѪ֢£¨systemic hypoxemia£©£¬²¢×è°­×éÖ¯ÑõºÏ£¨tissue oxygenation£©£¬½ø¶øÒý·¢ËðÉËÐԵļ±ÐÔºôÎü×ÛºÏÖ¢£¨acute respiratory syndrome£©¡£

Through mimicking the action of hepcidin, SARS-CoV-2 exaggeratedly increases the concentration of intratissue (e.g., liver, spleen, bone marrow, and muscles)ferritin, while there is a reduction in the availability of SF, and consequently, a reduction in erythrocyte production. This decrease in circulating erythrocytes perpetuates systemic hypoxemia and hinders tissue oxygenation, which is already impaired in patients with acute respiratory syndrome.

ÂÛÎÄÒÀ¾ÝÆß

COVID-19 compromises iron homeostasis:Transferrin as a target of investigation
COVID-19Ëðº¦ÌúÎÈ̬£º×ªÌúµ°°××÷ΪÑо¿Ä¿±ê
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694355/
https://linkinghub.elsevier.com/retrieve/pii/S0946-672X(22)00189-4
https://pubmed.ncbi.nlm.nih.gov/36509021/

Published online 2022 Nov 25

ÂÛÎÄÖ¼ÔÚÆÀ¹À¡¢·ÖÎöCOVID-19»¼ÕßµÄÌú£¨iron£©¡¢Ìúµ°°×£¨ferritin£©ºÍÌúµ÷ËØ£¨hepcidin£©Ë®Æ½ÒÔ¼°×ªÌúµ°°×ÊÜÌ壨transferrin receptor£©»ùÒò±í´ï¡£ÂÛÎÄ¿¼²ì¡¢Ñо¿ÁË427Ãû²ÎÓëÕßµÄÌú´úл±êÖ¾ÎÆäÖÐ218ÈËÔÚ2020Äê6ÔÂÖÁ2020Äê9Ô¼䱻Õï¶ÏΪCOVID-19»¼Õߣ¬ÁíÍâ209ÈËδ»¼Óиü²²¡¡£

¹ØÓÚSARS-CoV-2µÄÌúµ÷ËØÄ£·Â£¬ÂÛÎÄÖ¸³ö£¨ÒÔÏÂÄÚÈÝ˳Ðòժ¼×ÔÂÛÎIJ»Í¬Õ½ڡ¢¶ÎÂ䣩£º

×ÔCOVID-19´óÁ÷ÐпªÊ¼ÒÔÀ´£¬ÔÚ»¼ÓÐÕâÖÖ¼²²¡µÄ¸öÌåÖй۲쵽ÁËÐí¶à´úл¸Ä±ä£¨numerous metabolic alterations£©¡£ÖÚËùÖÜÖª£¬SARS-CoV-2Äܹ»Ä£·ÂÌúµ÷ËصÄ×÷Óã¨SARS-CoV-2 can mimic the action of hepcidin£©£¬¸Ä±äϸ°ûÄÚÌú´úл£¨altering intracellular iron metabolism£©£¬µ«¹ØÓÚ£¨SARS-CoV-2£©¶ÔÌúÑ­»·£¨iron cycle£©ÆäËû;¾¶¿ÉÄÜÔì³ÉµÄºó¹û£¬ÈÔÈ»´æÔÚÈÏʶ·ÖÆç¡£

Since the beginning of the COVID-19 pandemic, numerous metabolic alterations have been observed in individuals with this disease. It is known that SARS-CoV-2 can mimic the action of hepcidin, altering intracellular iron metabolism, but gaps remain in the understanding of possible outcomes in other pathways involved in the iron cycle.

¡£¡£¡£

COVID-19µ¼Ö¶àÖÖÌúÑ­»·Í¾¾¶£¨iron cycle pathways£©·¢Éú¸Ä±ä£¬ÌúºÍÌúµ°°×£¨ferritin£©Ë®Æ½ÊÇ·´Ó³¸ÐȾ״̬¡¢Ñݱ䣨½øÕ¹£©ÒÔ¼°¼²²¡Ô¤ºóµÄ±êÖ¾ÎתÌúµ°°×ÊÜÌ壨transferrin receptor£©»ùÒò±í´ïÔö¼Ó±íÃ÷ÌúÄÚ»¯Ôö¼Ó£¨increased iron internalization£©£¬²¢ÇÒ£¬SARS-CoV-2¶ÔÌúµ÷ËØ×÷ÓõÄÄ£·Â£¨the mimicry of hepcidin action by SARS-CoV-2£©¼õÉÙÁ˾­ÓÉÌúתÔ˵°°×µÄÌúÊä³ö£¨iron export via ferroportin£©£¬Õâ¿ÉÒÔ½âÊÍÓÉϸ°ûÄÚÌú²¶»ñ£¨intracellular trapping£©ÒýÆðµÄµÍÌúÑ­»·Ë®Æ½£¨low circulating levels of iron£©¡£

COVID-19 causes changes in several iron cycle pathways, with iron and ferritin levels being markers that reflect the state and evolution of infection, as well as the prognosis of the disease. The increased expression of the transferrin receptor gene suggests increased iron internalization and the mimicry of hepcidin action by SARS-CoV-2, reduces iron export via ferroportin, which would explain the low circulating levels of iron by intracellular trapping.

¡£¡£¡£

´ËÍ⣬ÓÉÓÚ£¨SARS-CoV-2£©²¡¶¾µÄ¶àÖؽ»»¥¹¥»÷£¬COVID-19»á·¢ÉúһϵÁÐÉú»¯Í¾¾¶Ê§ºâ£¨biochemical pathway imbalances£©£¬ÀýÈçÌú´úлÕÏ°­£¨iron dysmetabolism£©¡£¾ÝÍƲ⣬ÕâÊÇÒòΪSARS-CoV-2Ä£·ÂÁËÌúµ÷ËصÄ×÷Óã¨SARS-CoV-2 mimics the action of hepcidin£©£¬Ìúµ÷ËØÓëÌúתÔ˵°°×£¨ferroportin£©Ï໥×÷Ó㬵¼Ö¸ø´ºÏÎָferroportin-hepcidin complex£©ÄÚ»¯ºÍ½µ½â£¨causing the internalization and degradation of this complex£©£¬¼õÉÙÁËϸ°ûÄÚÌúµÄÊä³ö£¬½ø¶øÒý·¢¸ßÌúµ°°×Ѫ֢£¨hyperferritinemia£©ºÍÌúËÀÍö£¨ferroptosis£©¡£

Furthermore, due to the multiple interactive levels of viral attack, a set of several biochemical pathway imbalances such as iron dysmetabolism occurs in COVID-19. This is supposedly because SARS-CoV-2 mimics the action of hepcidin [5], which interacts with ferroportin, causing the internalization and degradation of this complex, favoring iron entry into the cell and decreasing its export from the interior of cells [6], hyperferritinemia and ferroptosis develop [5].

¡£¡£¡£


³ýÁËÔö¼ÓÌúµ°°×Í⣬ÓÐÑо¿£¨»¹£©Ö¸³öÁËSARS-CoV-2Ä£·ÂÌúµ÷ËØ×÷Óã¬Ôö¼ÓÑ­»·ºÍ×éÖ¯Ìúµ°°×µÄÄÜÁ¦£¨the ability of SARS-CoV-2 to mimic the action of hepcidin, increasing circulating and tissue ferritin£©¡£Õâµ¼ÖÂѪÇåÌúȱ·¦£¨serum iron deficiency£©²¢½µµÍѪºìµ°°×£¨lowered hemoglobin£©¡£¹ýÁ¿µÄÌúÓëÑõ·Ö×ÓÏ໥×÷ÓòúÉú»îÐÔÑõ£¨reactive oxygen£©£¬µ¼Ö²»Í¬Æ÷¹ÙÖîÈç·Î¡¢¸Î¡¢ÉöºÍÐÄÔàµÄÑõ»¯ËðÉË£¨oxidative damage£©£¬Õâ»áµ¼Ö£¨Ï¸°û£©ÌúËÀÍö£¨ferroptosis£©¡£ÔÚϸ°ûÍâ»·¾³·½Ã棨Regarding the extracellular environment£©£¬Ñªºìµ°°×²¡£¨hemoglobinopathy£©ºÍÌú´úлÒì³££¨iron dysmetabolism£©¹²Í¬Ë𺦺ìϸ°ûÔËÊäO2µÄÄÜÁ¦£¬µ¼ÖÂȱÑõ¡£´ÓÉúÀíÉϽ²£¬Æ¶ÑªÐÔȱÑõ£¨anemic hypoxia£©ÓÕµ¼·ÎѪ¹ÜÊÕËõ£¨pulmonary vasoconstriction£©²¢Ôö¼Ó΢Ѫ¹ÜÄÚÏËάµ°°×µÄÐγɣ¨fibrin formation within this microvasculature£©¡£Òò´Ë£¬Ìúµ÷ËغÍÌúתÔ˵°°×µÄʧµ÷»¯Ï໥×÷Óã¨the dysregulated interaction of hepcidin and ferroportin£©Äܹ»Í¨¹ýƽ»¬¼¡ÔöÖ³£¨through smooth muscle proliferation£© µ¼Ö·ζ¯Âö¸ßѹ£¨pulmonary artery hypertension£©£¬Õâ¿ÉÄÜÓÐÖúÓÚ²ûÃ÷COVID-19»¼ÕßÒòºôÎüË¥½ß¶øËÀÍöµÄ²¡Àí»úÖÆ£¨which perhaps helps elucidate death from respiratory failure in these COVID-19 patients£©¡£

In addition to increased ferritin, studies point to the ability of SARS-CoV-2 to mimic the action of hepcidin, increasing circulating and tissue ferritin. This induces serum iron deficiency and lowered hemoglobin [5]. Excess iron interacts with molecular oxygen generating reactive oxygen species, which contributes to oxidative damage in different organs, such as the lungs, liver, kidneys and heart, which can lead to ferroptosis [7]. Regarding the extracellular environment, the combination of hemoglobinopathy and iron dysmetabolism impairs the ability of erythrocytes to transport O2, resulting in hypoxia. Physiologically, anemic hypoxia induces pulmonary vasoconstriction and increased fibrin formation within this microvasculature. Thus, the dysregulated interaction of hepcidin and ferroportin can lead to pulmonary artery hypertension through smooth muscle proliferation [5], which perhaps helps elucidate death from respiratory failure in these COVID-19 patients.

¡£¡£¡£

¹ØÓÚÌúºÍÌúµ°°×£¬±¾Ñо¿¿ÉÒÔ˵֧³ÖÁËÕâÑùµÄ¼ÙÉ裺SARS-CoV-2£¬Í¨¹ýÄ£·ÂÌúµ÷ËصÄ×÷Óã¨by mimicking the action of hepcidin£©£¬Ôö¼ÓÌúµ°°×µÄÁ÷ͨ£¨increases circulation of ferritin£©£¬Í¬Ê±ÓÕµ¼ÑªÇåÌúºÍѪºìµ°°×ˮƽȱ·¦£¨inducing serum iron and hemoglobin level deficiency£©¡£ÔÚÕâÒ»¶¯Ì¬ÖУ¬»¼Õß»á³öÏÖƶѪ״̬£¨state of anemia£©£¬¼´Ê¹ËûÃÇÓиßÌúµ°°×Ѫ֢£¨hyperferritinemic£©¡££¨SARS-CoV-2£©²¡¶¾£¨Spike£©µ°°×¶ÔÌúµ÷ËصÄÄ£Äâ×÷Óã¨The mimetic action of the viral protein on hepcidin£©Äܹ»µ¼ÖÂÌúתÔ˵°°××è¶Ï£¨ferroportin blockade£©¡¢Ï¸°ûÄÚÌú²¶»ñ£¨intracellular iron trapping£©ºÍµÍÌúѪ֢£¨hypoferremia£©¡£ÓÐÖ¤¾Ý±íÃ÷£¬Ñ×Ö¢Æڼ䣬ϸ°ûÄÚÌúµÄ»ýÀÛ£¨the accumulation of intracellular iron£©Ò²»áÔö¼ÓÌúµ°°×£¬½øÒ»²½Ôö¼Óϸ°ûÄÚÌúµÄŨ¶È£¬£¨ÓëÖ®ÓйصÄÌú£©´úлʧµ÷¿Éµ¼ÖÂÔçÆÚ¶àϸ°ûÌúËÀÍö£¨early multicellular ferropoptosis£©¡£

Considering the results of the present study, in relation to iron and ferritin, it can be said they support the hypothesis that SARS-CoV-2, by mimicking the action of hepcidin, increases the circulation of ferritin while inducing serum iron and hemoglobin level deficiency. In this dynamic, the patient develops a state of anemia, even though they are hyperferritinemic [5]. The mimetic action of the viral protein on hepcidin can lead to ferroportin blockade causing intracellular iron trapping and hypoferremia. There is evidence that during inflammation, the accumulation of intracellular iron also increases ferritin, further increasing the concentration of intracellular iron, evidencing metabolic dysregulation that can lead to early multicellular ferropoptosis [9].

ÆäËüÏà¹ØÂÛÎÄ

Increased serum levels of Hepcidin and ferritin are associated with severity of COVID-19
ѪÇåÌúµ÷ËغÍÌúµ°°×ˮƽÉý¸ßÓëCOVID-19µÄÑÏÖس̶ÈÏà¹ØÁª
https://medscimonit.com/abstract/full/idArt/926178

Hepcidin and ferritin levels as markers of immune cell activation during septic shock, severe COVID-19 and sterile inflammation
Ìúµ÷ËغÍÌúµ°°×ˮƽÔÚ°ÜѪÐÔÐÝ¿Ë¡¢ÑÏÖØCOVID-19ºÍÎÞ¾úÑ×Ö¢ÖÐ×÷ΪÃâÒßϸ°û¼¤»îµÄ±êÖ¾Îï
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1110540/full

COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review
COVID-19£ºÑ×Ö¢Ö®ÍâµÄѪºìµ°°×¡¢ÌúºÍȱÑõ¡£ÐðÊöÐԻعË
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267810/
https://www.mdpi.com/2039-7283/10/2/1271

COVID-19, Cation Dysmetabolism, Sialic Acid, CD147, ACE2, Viroporins, Hepcidin and Ferroptosis: A Possible Unifying Hypothesis
COVID-19¡¢ÑôÀë×Ó´úлÒì³£¡¢ÍÙÒºËá¡¢CD147¡¢ACE2¡¢²¡¶¾¿×µ°°×¡¢Ìúµ÷ËغÍÌúËÀÍö£ºÒ»¸ö¿ÉÄܵÄͳһ¼ÙÉè
https://f1000research.com/articles/11-102

Covidin, a possible new player between hepcidin and ferroportin in hypoxia and inflammation caused by COVID-19
Covidin£¬ÔÚCOVID-19ÒýÆðµÄȱÑõºÍÑ×Ö¢ÖУ¬Ìúµ÷ËغÍÌúתÔ˵°°×Ö®¼ä¿ÉÄܵÄвÎÓëÕß
https://onlinelibrary.wiley.com/doi/10.1002/jcb.30246

Hyperferritinemia, Low Circulating Iron and Elevated Hepcidin May Negatively Impact Outcome in COVID-19 Patients:  A Pilot Study
¸ßÌúµ°°×Ѫ֢¡¢µÍÑ­»·ÌúºÍÌúµ÷ËØÉý¸ß²»ÀûÓÚCOVID-19»¼ÕßµÄÔ¤ºó£¨ÖÎÁƽá¹û£©£ºÒ»Ïî̽Ë÷Ñо¿
https://www.mdpi.com/2076-3921/11/7/1364

The relationship between serum erythropoietin, hepcidin, and haptoglobin levels with disease severity and other biochemical values in patients with COVID©19
COVID-19»¼ÕßѪÇå´Ùºìϸ°ûÉú³ÉËØ¡¢Ìúµ÷Ëغʹ¥Öéµ°°×ˮƽÓë¼²²¡ÑÏÖس̶ȺÍÆäËûÉú»¯ÖµÖ®¼äµÄ¹Øϵ
https://onlinelibrary.wiley.com/doi/10.1111/ijlh.13479

Ferroptosis and multi-organ complications in COVID-19  mechanisms and potential therapies
COVID-19»úÖƺÍDZÔÚÁÆ·¨ÖеÄÌúËÀÍöºÍ¶àÆ÷¹Ù²¢·¢Ö¢
https://www.frontiersin.org/articles/10.3389/fgene.2023.1187985/full

-

9¡¢ferroportin£¨ÌúתÔ˵°°×£©

-

ÌúתÔ˵°°×£¨ferroportin£¬ËõдΪFPN»òFP£©£¬ÓÖ³ÆĤÌúתÔ˵°°×£¬ÊÇÒÑÖªµÄΨһһÖÖϸ°ûÌúÊä³öµ°°×£¬Ëü½áºÏϸ°ûÄڵĶþ¼ÛÌúÀë×Ó£¨Fe2+£©£¬²¢½«ÆäÊͷŵ½Ï¸°ûÍâ¡£ÌúתÔ˵°°×ÊÇС³¦Ï¸°û¡¢£¨¸Î¡¢Æ¢Öеģ©¾ÞÊÉϸ°û¡¢¸Îϸ°û¡¢Ì¥ÅÌϸ°ûµÈϸ°ûÊä³ö¡¢ÊÍ·ÅÌúµÄΨһ¡°Ë®ÁúÍ·¡±£¬ÌúתÔ˵°°×¶ÔС³¦£¨Ê®¶þÖ¸³¦£©µÄÉÅʳÌúÎüÊÕÒ²·Ç³£ÖØÒª¡£

ÌúתÔ˵°°×£¨FPN£©»¹ÓÐÆäËü¶àÖÖÃû³Æ£¬ÈçÌúµ÷½ÚתÔËÌ壨Iron-regulated transporter£¬IREG£©¡¢½ðÊôתÔ˵°°×£¨metal transport protein£¬MTP£©µÈµÈ¡£

ÈËÀàºÍ²¸È鶯ÎïµÄÌúתÔ˵°°×¿ÉÄÜÖ»ÓÐferroportin-1£¨FPN-1£¬FPN1£©Ò»ÖÖÐÎʽ£»Ö²ÎïÓÐÁ½ÖÖÌúתÔ˵°°×FPN-1¡¢FPN-2£¬Ä³Ð©Ö²ÎïÈçÄâÄϽ棨Arabidopsis thaliana£©ÓÐÈýÖÖÌúתÔ˵°°×£¨»ùÒò¡¢Í¬Ô´ÎFPN-1¡¢FPN-2¡¢Mar1¡£

ÈËÀàºÍ²¸È鶯ÎïµÄÌúתÔ˵°°×-1£¨ferroportin-1£¬FPN-1£©ÔÚ£¨³ÉÊìµÄ£©Ê®¶þÖ¸³¦ÈÞëÉÏƤϸ°û¡¢¸Îϸ°û£¨¸ÎÔàÏÙÉÏƤϸ°û£©¡¢¸ÎºÍÆ¢µÄ¾ÞÊÉϸ°û¡¢Ì¥Å̵ĺÏÌå×ÌÑø²ãϸ°û¡¢Ö¬·¾Ï¸°ûµÈϸ°ûÖбí´ï£¬·Ö±ð·Ö²¼ÔÚÏàӦϸ°ûµÄ»ùµ×°ûÖÊ¡¢»ùµ×Ĥ¡¢Ï¸°ûĤ»ò¶¥¶Ë°ûÖʵȲ¿Î»¡£

ÌúתÔ˵°°×£¨ferroportin£¬FPN£©·þÎñÓÚϸ°ûµÄÌúÊä³ö¡¢ÌúÊÍ·Å£¬ÉÏһƪÎÄÕ½éÉܵÄתÌúµ°°×£¨Transferrin£¬Tf£©¡¢×ªÌúµ°°×ÊÜÌ壨Transferrin receptor£¬TfR£©Ôò·þÎñÓÚϸ°ûµÄÌúÊäËÍ¡¢ÌúÉãÈ롣תÌúµ°°×£¨Tf£©Ïò¸÷Æ÷¹Ù¡¢×éÖ¯ÖеÄϸ°ûÔËËÍÑ­»·Ìú£¬Ï¸°ûĤÉϵÄתÌúµ°°×ÊÜÌ壨TfR£©½áºÏ¡¢½ÓÊÕתÌúµ°°×£¬½«×ªÌúµ°°×¼°ÆäЯ´øµÄÌúÉãÈëϸ°ûÄÚ¡£×ªÌúµ°°×£¨Tf£©½áºÏ¡¢ÔËË͵ÄÊÇÈý¼ÛÌúÀë×Ó£¨Fe3+£©£¬¶øÌúתÔ˵°°×£¨FPN£©½áºÏ¡¢Êä³öµÄÊǶþ¼ÛÌúÀë×Ó£¨Fe2+£©¡£ÌúתÔ˵°°×£¨FPN£©Êͷŵ½Ï¸°ûÍâµÄFe2+ÔÚ±»×ªÌúµ°°×£¨Tf£©½áºÏ¡¢ÊäËÍÇ°½«Ïȱ»Ñõ»¯ÎªÈý¼ÛÌúÀë×Ó£¨Fe3+£©£»Ð¡³¦£¨Ö÷ÒªÊÇÊ®¶þÖ¸³¦£©´ÓʳÎïÖÐÎüÊÕµÄÒ²ÊÇFe3+£¬ÔÚ±»ÌúתÔ˵°°×£¨FPN£©½áºÏ²¢Êͷŵ½Ï¸°ûÍâÇ°£¬Ëü½«±»»¹Ô­ÎªFe2+¡£

Ìúµ÷ËØ£¨Hepcidin£©¿ÉÓëϸ°ûĤÉϵÄÌúתÔ˵°°×£¨FPN£©½áºÏ£¬½éµ¼ÆäÄÚÉã²¢ÔÚϸ°ûÄÚ½µ½â£¬ÌúתÔ˵°°×µÄ½µ½â¡¢Ë®Æ½Ïµ÷½«ÒÖÖÆϸ°ûµÄÌúÊÍ·Å¡¢ÌúÊä³ö£¬Ê¹¸ü¶àµÄÌú±»¸ôÀë¡¢±£ÁôÔÚÌúÎüÊÕϸ°û£¨Ð¡³¦ÉÏƤϸ°û£©¡¢Ìú»ØÊÕϸ°û£¨¾ÞÊÉϸ°û£©¡¢Ìú´¢´æϸ°ûÄÚ£¨¸Îϸ°û£©¡¢ÌúÖÐתϸ°û£¨Ì¥ÅÌϸ°û£©µÈϸ°ûµÄÄÚ²¿£¬Ê¹Êͷŵ½ÑªÒºÑ­»·ÖÐͨ¹ýתÌúµ°°×£¨Tf£©Ïò¸÷×éÖ¯ÊäË͵ÄÑ­»·Ìú¼õÉÙ¡£¼´Ìúµ÷ËØͨ¹ý½áºÏ¡¢½µ½â¡¢Ïµ÷ÌúתÔ˵°°×ÒÖÖÆϸ°ûÌúÊä³ö£¬¼õÉÙÑ­»·Ìú¡£Ìúµ÷ËغÍÌúתÔ˵°°×/Ñ­»·ÌúµÄ¹Øϵ£¬ÓеãÀàËÆÒȵºËغÍÆÏÌÑÌÇ¡£

ÓÉ¡°Ìúµ÷ËØ¡±Õ½ڵġ°ÂÛÎÄÒÀ¾Ý¶þ¡±¿ÉÖª£¬SARS-CoV-2 Spikeµ°°×β²¿ÇøÓòÓëÌúµ÷ËØ°±»ùËáÐòÁÐÏàËÆ£»ÓÉ¡°ÂÛÎÄÒÀ¾ÝÈý¡±¿ÉÖª£¬SARS-CoV-2  Spikeµ°°×µÄβ²¿Æ¬¶ÏCovidinÓÐÌúµ÷ËØÄ£·ÂÄÜÁ¦£¬¼ÆËã»úÄ£ÄâÑо¿±íÃ÷£¬CovidinÄÜÒÔ¸ßÓÚÌúµ÷ËصĽáºÏÇ׺ÍÁ¦½ôÃܽáºÏÌúתÔ˵°°×£¨FPN£©¡£Ä¿Ç°£¬Ã»ÓÐϸ°û-²¡¶¾¸ÐȾʵÑéÑéÖ¤»ò·ñ¶¨ÉÏÊöÄ£ÄâÑо¿½áÂÛ£¬Ò²Ã»ÓÐÏà¹ØʵÑéÈ·¶¨CovidinÊÇ·ñ¿É½ø¶øµ¼ÖÂÌúתÔ˵°°×£¨FPN£©½µ½â£¬ÊÇ·ñÄܹ»ÒÔÌúµ÷Ëصķ½Ê½¸ÉÔ¤ËÞÖ÷Ìú´úл£¬µ«¡°Ìúµ÷ËØ¡±Õ½ڵĶà¸öÂÛÎÄÒÀ¾Ý£¨¡°ÂÛÎÄÒÀ¾ÝËÄ¡±~¡°ÂÛÎÄÒÀ¾ÝÆß¡±£©±íÃ÷£¬SARS-CoV-2 Spike-CovidinºÜ¿ÉÄܾ߱¸ÕâÑùµÄÄÜÁ¦¡£

SARS-CoV-2¿ÉÄÜÊÇÒÑÂÛÎı¨¸æµÄ£¬Î¨Ò»Ò»ÖֿɽáºÏÌúתÔ˵°°×£¨FPN£©µÄ²¡¶¾£¬Î¨Ò»Ò»ÖÖ¿Éͬʱ½áºÏÌúתÔ˵°°×£¨FPN£©ºÍÌúµ÷ËصIJ¡¶¾£»SARS-CoV-2µÄSpikeµ°°×¿ÉÄÜÊÇΨһһÖֿɽáºÏÌúתÔ˵°°×£¨FPN£©µÄ²¡¶¾µ°°×£¬Î¨Ò»Ò»ÖÖ¿Éͬʱ½áºÏÌúתÔ˵°°×£¨FPN£©ºÍÌúµ÷ËصIJ¡¶¾µ°°×¡£ÓÉÉÏһƪÎÄÕ¿ÉÖª£¬SARS-CoV-2µÄSpike»¹ÄܽáºÏÁíÒ»ÖֹؼüÌú´úлÒò×Ó--תÌúµ°°×ÊÜÌ壨TfR£©¡£ÎÒÃÇ»¹½«¿´µ½SARS-CoV-2¸ü¶àµÄÌú´úл¸ÉÔ¤ÄÜÁ¦¡£

Ìúµ÷ËØÓëÌúתÔ˵°°×£¨FPN£©µÄ½áºÏ¾ßÓÐÌØÒìÐÔ£¬Ìúµ÷ËØ¿ÉÄÜÊÇÒÑÖªµÄΨһһÀàÄܹ»½áºÏÌúתÔ˵°°×µÄÌìÈ»µ°°×»ò¶àëÄ¡£·Ö×ÓÉúÎïѧ½ç¡¢Ò½Ñ§½ç¶ÔÌúµ÷ËؽáºÏ¡¢½µ½âÌúתÔ˵°°×µÄ·Ö×Ó»úÖÆ×÷¹ýÉîÈëÑо¿£¬Éè¼Æ¡¢ºÏ³É¡¢ÓÅ»¯Á˶àÖֿɽáºÏ¡¢½µ½âÌúתÔ˵°°×µÄÈ˹¤Ìúµ÷ËØÄ£ÄâÎï¡£

Ïà¹ØÂÛÎÄÒ»

Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload
СÌúµ÷ËØÊǺÏÀíÉè¼ÆµÄСëÄ£¬¿ÉÄ£ÄâСÊóÌúµ÷ËصĻîÐÔ£¬¿ÉÄÜÓÐÖúÓÚÖÎÁÆÌú¹ýÔØ
https://www.jci.org/articles/view/57693

Published November 1, 2011

ÂÛÎÄÑо¿¡¢¼ø¶¨Á˶ԽáºÏ¡¢½µ½âÌúתÔ˵°°×£¨ferroportin£¬FPN£©Æð¹Ø¼ü×÷ÓõÄÌúµ÷ËØÖеÄÊèË®/·¼Ïã²Ð»ù£¨hydrophobic/aromatic residues£©¡¢°ëë×°±Ëᣨcysteines£©²Ð»ùºÍ¶þÁò¼ü£¨disulfide bond£©£¬Éè¼Æ¡¢ÓÅ»¯¡¢ºÏ³ÉÁ˶àÖÖ³¤¶ÈΪ7-9¸ö°±»ùËáµÄÄÜÄ£ÄâÌúµ÷ËØ£¬½áºÏ¡¢½µ½âÌúתÔ˵°°×£¬½µµÍѪÇåÌúµÄ¡°ÃÔÄãÌúµ÷ËØ¡±£¨Minihepcidins£©¶àëÄ£¬²¿·ÖMinihepcidinsÓÅÓÚÌìÈ»hepcidin¡£

ÂÛÎÄÖ¸³ö£¬Ìúµ÷ËصÄ7-9¸öN¶Ë°±»ùËᣬ°üÀ¨Ò»¸öÁò´¼°ëë×°±Ëᣨthiol cysteine£©¹¹³ÉÁ˱£³ÖÌúµ÷ËØ»îÐÔµÄ×îС½á¹¹¡£

Guided by this model, we showed that 7¨C9 N-terminal amino acids of hepcidin, including a single thiol cysteine, comprised the minimal structure that retained hepcidin activity, as shown by the induction of ferroportin degradation in reporter cells.

ͨ¹ý½øÒ»²½µÄ£¨»ùÒò£©ÐÞ¸ÄÒÔÌá¸ß¶Ôµ°°×Ë®½âµÄµÖ¿¹Á¦¡¢¿Ú·þÉúÎïÀûÓöȵȵÈÎÊÌâºó£¬²úÉúÁË£¨¶àÖÖÈËΪÉè¼Æ¡¢ÓÅ»¯µÄ£¬³¤¶ÈΪ7-9¸ö°±»ùËáµÄ£©Ð¡Ìúµ÷ËØ£¨minihepcidins£©£¬ÔÚ¶ÔСÊó½øÐÐ賦Íâ»ò¿Ú·þ¸øÒ©ºó£¬Ð¡Ìúµ÷ËصÄѪÇåÌúˮƽ½µµÍЧ¹ûÓÅÓÚÌìÈ»Ìúµ÷ËØ¡£´ËÍ⣬³¤ÆÚÓÃСÌúµ÷ËØÖÎÁƵÄСÊóµÄ¸ÎÌúŨ¶ÈµÍÓÚ½öÓÃÈܼÁÖÎÁƵÄСÊó¡£Ð¡Ìúµ÷ËØ¿ÉÄÜÓÐÖúÓÚÖÎÁÆÌú³¬Ôؼ²²¡¡£

Further modifications to increase resistance to proteolysis and oral bioavailability yielded minihepcidins that, after parenteral or oral administration to mice, lowered serum iron levels comparably to those after parenteral native hepcidin. Moreover, liver iron concentrations were lower in mice chronically treated with minihepcidins than those in mice treated with solvent alone. Minihepcidins may be useful for the treatment of iron overload disorders.

±ÊÕßûÓп¼²ìSARS-CoV-2 Spikeβ²¿ÇøÓò/CovidinƬ¶ÏÓëij¸öminihepcidins°±»ùËáÐòÁеÄÏàËÆÐÔ»ò¹ØÁª¡£

Ïà¹ØÂÛÎĶþ

Does Hepcidin Tuning Have a Role among Emerging Treatments for Thalassemia
Ìúµ÷Ëص÷½ÚÔÚµØÖк£Æ¶ÑªµÄÐÂÐËÁÆ·¨ÖÐÊÇ·ñ·¢»Ó×÷Óã¿
https://www.mdpi.com/2077-0383/11/17/5119

Published: 30 August 2022

ÕâƪÂÛÎĵġ°Hepcidin Mimetics¡±£¨Ìúµ÷ËØÄ£ÄâÎС½ÚÌáµ½ÁËËÄÀàÌúµ÷ËØÈ˹¤Ä£ÄâÎï»òÈ˹¤ºÏ³ÉÎLJPC-401¡¢PTG-300£¬Mini-hepcidins¡¢Cyclic N-Methylated Mini-Hepcidins£¬Ç°ÈýÀàÈ˹¤Ìúµ÷ËØÉè¼Æ¡¢¿ª·¢ÓÚÒßÇéÇ°£¬°üÀ¨ÉÏÒ»ÂÛÎÄÖеġ°ÃÔÄãÌúµ÷ËØ¡±£¨Mini-hepcidins£©¡£

Ïà¹ØÂÛÎÄÈý

Hepcidin agonists as therapeutic tools
Ìúµ÷Ëؼ¤¶¯¼Á×÷ΪÖÎÁƹ¤¾ß
https://ashpublications.org/blood/article/131/16/1790/36820/Hepcidin-agonists-as-therapeutic-tools

BLOOD SPOTLIGHT| April 19, 2018

ÕâƪÂÛÎÄÉè¼ÆµÄСÌúµ÷ËØÓëÇ°ÃæµÄminihepcidins ºÜÏàËÆ¡£

ÂÛÎÄ¡°Utilizing hepcidin pathway to treat iron overload disorders¡±£¨ÀûÓÃÌúµ÷ËØ;¾¶ÖÎÁÆÌú¹ýÔؼ²²¡£©Ð¡½ÚÖÐ˵£º

¡£¡£¡£ÕâЩÒÅ´«Ñо¿´ÙʹÈËÃÇ̽Ë÷ÆäËû·½·¨À´Ôö¼ÓÌúµ÷ËØȱ·¦µÄÌú³¬ÔØ»¼ÕßµÄÑ­»·Ìúµ÷ËØ¡£ È«³¤Ìúµ÷ËصĺϳÉЧÂÊÏà¶Ô½ÏµÍ£¬¶øÇÒÓÉÓÚÉöÔàÇå³ýËٶȿ죬Ìúµ÷ËØÔÚÑ­»·ÖеİëË¥Æں̡ܶ£ÎªÁË¿Ë·þÕâЩÏÞÖÆ£¬£¨ÆäËüÑо¿ÒѾ­£©Éè¼ÆÁ˼¸ÖÖ·Ö×ÓÀ´Ä£ÄâÌúµ÷ËØ»îÐÔ»ò´Ì¼¤ÄÚÔ´ÐÔÌúµ÷ËزúÉú¡£ÎÒÃÇ¿ª·¢ÁËСÌúµ÷ËØ£¬ÕâÊÇÒ»ÖÖ»ùÓÚÌúµ÷ËØ7-9 N¶Ë°±»ùËáƬ¶ÎµÄ¶ÌëÄ¡£ÎÒÃÇÊ×ÏȱíÃ÷£¬hepcidinµÄÕâ¸öNÄ©¶ËƬ¶Î×ãÒÔÔÚÌåÍâÓÕµ¼FPN-1£¨ferroportin-1£¬ÌúתÔ˵°°×-1£©ÄÚ»¯ºÍ½µ½â¡£È»ºó£¬ÎÒÃǶÔÕâЩëĽøÐÐÁ˸ÄÔìÒÔÑÓ³¤Æä°ëË¥ÆÚºÍЧÁ¦£¬ÊµÑéÖ¤Ã÷£¬¸øСÊóÊ©ÓõÄÕâЩ£¨¸ÄÔìºóµÄ£©Ð¡Ìúµ÷ËØëÄÄ£ÄâÁËÄÚÔ´ÐÔÌúµ÷ËضÔÌú£¨ÊÍ·Å£©µÄÏÞÖÆ×÷Óá£

These genetic studies prompted the exploration of other approaches to increasing circulating hepcidin in iron-overloaded patients with hepcidin deficiency. Synthesis of full-length hepcidin is relatively inefficient, and the half-life of hepcidin in circulation is short because of rapid renal clearance.36  To overcome these limitations, several molecules have been designed to mimic hepcidin activity or stimulate endogenous hepcidin production.2,37  We developed minihepcidins (MHs), short peptides based on the 7-9 N-terminal amino acid segment of hepcidin. We first showed that this N-terminal segment of hepcidin is sufficient to induce FPN-1 internalization and degradation in vitro.38  We then engineered these peptides to increase their half-life and potency, and demonstrated that administration of MHs to mice mimics the iron-restrictive effect of endogenous hepcidin.

ÂÛÎÄ¡°Utilizing hepcidin agonists to treat siderophilic infections¡±£¨ÀûÓÃÌúµ÷Ëؼ¤¶¯¼ÁÖÎÁÆÊÈÌú¾ú¸ÐȾ£©Ð¡½Ú»¹Ìáµ½£º

ÒѾ­¿ª·¢Á˶àÖÖÆäËû²ßÂÔÀ´Ä£ÄâÌúµ÷ËØ»îÐÔ»òÔö¼ÓÄÚÔ´ÐÔÌúµ÷ËصIJúÁ¿¡£ÆäÖаüÀ¨ºÏ³ÉÈ«³¤ÈËÌúµ÷ËØ¡¢ÁíÒ»ÖÖ»ùÓÚëĵÄÌúµ÷ËØÄ£ÄâÎС·Ö×ÓFPN-1ÒÖÖƼÁ¡¢»òͨ¹ýÌåÄÚ°ÐÏòºÍ½µ½âTmprss6ÐÅʹRNAÀ´¶ÔTmprss6½øÐÐÒ©ÀíѧÒÖÖÆ£¬ÔÚÌúµ÷ËØȱ·¦Ö¢µÄÁÙ´²Ç°Ä£ÐÍÖУ¨ÉÏÊö·½·¨£©¾ùÏÔʾ³öÏàËƵÄÓÐÒæЧ¹û¡£¡£¡£

Multiple other strategies have been developed to mimic hepcidin activity or increase production of endogenous hepcidin. These include synthetic full-length human hepcidin,45  another peptide-based hepcidin mimetic,46  small molecule FPN-1 inhibitors,47  or pharmacologic inhibition of Tmprss6 by in vivo targeting and degradation of Tmprss6 messenger RNA,48,49  all displaying similar beneficial effects in preclinical models of hepcidin deficiency.

±ÊÕßҲδ¿¼²ìSARS-CoV-2 Spikeβ²¿ÇøÓò/CovidinƬ¶ÏÓë¸ÃÂÛÎÄ¿ª·¢µÄСÌúµ÷ËØëÄ°±»ùËáÐòÁеÄÏàËÆ¡¢¹ØÁªÐÔ¡£

£¨Î´Íê´ýÐø£©

0%(0)
0%(0)
¡¡¡¡·ÇµäÓֻص½Á˹ÊÏ磬ÏÂÖܴ󱬷¢£¡£¡£¡  /ÎÞÄÚÈÝ - alexsyalexsy 11/03/23 (73)
±ê Ìâ (±ØÑ¡Ïî):
ÄÚ ÈÝ (Ñ¡ÌîÏî):
ʵÓÃ×ÊѶ
±±ÃÀ×î´ó×îÈ«µÄÕÛ¿Û»úƱÍøÕ¾
ÃÀ¹úÃû³§±£½¡Æ·Ò»¼¶´úÀí,»¨Æì²Î,άËûÃü,ÓãÓÍ,ÂÑÁ×Ö¬,30ÌìÍË»õ±£Ö¤.Âò°ÙÃâÓÊ.
Ò»Öܵã»÷ÈÈÌû ¸ü¶à>>
Ò»Öܻظ´ÈÈÌû
ÀúÊ·ÉϵĽñÌ죺»Ø¸´ÈÈÌû
2022: Öй²×îºóÒ»¸öÐ×Äê
2022: Ê¥µ®
2021: ɱÈËЧÂʵÄÁ½¸ö¼«¶Ë
2021: ÃÉÆ­ÁËÈËÀà100¶àÄêµÄ´íÎóÐÅÑö
2020: ÎÞÄܲÅÃþʯͷ¹ýºÓ
2020: ÀÏÈýƪ
2019: ÖйúÓÐÕÜѧÂ𣿣¨ÉÏ£©
2019: ¹²²úµ³Ê¹µ½ÄÐÈËÔâÊÜ40ÍòÔªµÄÍËÐݽðËðʧ
2018: ztÎ÷ҽΪʲôһ¶¨ÒªÓÃÏûÃðÖ×ÁöµÄ·½Ê½À´
2018: ztÊÂʵʤÓÚÐ۱磬Ч¹ûÖ¤Ã÷Ò»ÇУ¡ÂíÔ­ÊÇ